

Easymunk

[image: https://raw.githubusercontent.com/fabiommendes/easymunk/master/docs/src/_static/easymunk_logo_animation.gif]
Easymunk is a easy-to-use pythonic 2d physics library that can be used whenever
you need 2d rigid body physics from Python. Perfect when you need 2d physics
in your game, demo or other application! It is built on top of the very
capable 2d physics library Chipmunk [http://chipmunk-physics.net].

Easymunk is a fork of the excellent pymunk project, but it allows itself to deviate
more from the original C-library API. The goal is to explore a more Pythonic interface
and tends to be easier to use and require less code to acomplish the same effects.

The first version was released in 2021, based on Pymunk 6.0. It owns greatly from Pymunk’s
maturity and 10 years of active development. Easymunk is a laboratory and we hope to
give back code to Pymunk upstream and collaborate with its development.

Pymunk: 2007 - 2020, Victor Blomqvist - vb@viblo.se, MIT License
Easymunk: 2021, Fábio Macêdo Mendes - fabiomacedomendese@gmail.com, MIT License

Installation

In the normal case Easymunk can be installed from PyPI with pip:

> pip install easymunk-physics

It has a few dependencies that are installed automatically.

Example

Quick code example:

import easymunk as mk # Import easymunk.

space = mk.Space(# Create a Space which contain the simulation
 gravity=(0, -10), # setting its gravity
)

body = space.create_box(# Create a Body with mass, moment,
 shape=(10, 20), # position and shape.
 mass=10,
 moment=150,
 position=(50,100),
)

while True: # Infinite loop simulation
 space.step(0.01) # Step the simulation one step forward
 space.debug_draw() # Print the state of the simulation

For more detailed and advanced examples, take a look at the included demos
(in examples/).

Examples are not included if you install with pip install easymunk. Instead you
need to download the source archive (easymunk-x.y.z.zip). Download available from
https://pypi.org/project/easymunk/#files

Documentation

The source distribution of Easymunk ships with a number of demos of different
simulations in the examples directory, and it also contains the full
documentation including API reference.

You can also find the full documentation including examples and API reference
on the Easymunk homepage, http://fabiommendes.github.io/easymunk.

The Easymunk Vision

“Make 2d physics easy to include in your game”

It is (or is striving to be):

	Easy to use - It should be easy to use, no complicated code should be
needed to add physics to your game or program.

	“Pythonic” - It should not be visible that a c-library (Chipmunk) is in
the bottom, it should feel like a Python library (no strange naming,
no memory handling and more)

	Simple to build & install - You shouldn’t need to have a zillion of
libraries installed to make it install, or do a lot of command line tricks.

	Multi-platform - Should work on both Windows, *nix and OSX.

	Non-intrusive - It should not put restrictions on how you structure
your program and not force you to use a special game loop, it should be
possible to use with other libraries like Pygame and Pyglet.

Contact & Support

	Homepage
	http://fabiommendes.github.io/easymunk

	Stackoverflow
	You can ask questions/browse old ones at Stackoverflow, just look for
the Easymunk tag. http://stackoverflow.com/questions/tagged/easymunk

	Issue Tracker
	Please use the issue tracker at github to report any issues you find:
https://github.com/fabiommendes/easymunk/issues

Regardless of the method you use I will try to answer your questions as soon
as I see them. (And if you ask on SO other people might help as well!)

Dependencies / Requirements

Basically Easymunk have been made to be as easy to install and distribute as
possible, usually pip install easymunk-physics will take care of everything for you.

	Python (Runs on CPython 3.8 and later)

	Chipmunk (Compiled library already included on common platforms)

	CFFI (will be installed automatically by Pip)

	Setuptools (should be included with Pip)

	GCC and friends (optional, you need it to compile Easymunk from source. On
windows Visual Studio is required to compile)

	Pygame (optional, you need it to run the Pygame based demos)

	Pyglet (optional, you need it to run the Pyglet based demos)

	Pyxel (optional, you need it to run the Pyxel based demos)

	Streamlit (optional, you need it to run the streamlit based demos)

	Matplotlib & Jupyter Notebook (optional, you need it to run the Matplotlib
based demos)

	Sphinx & aafigure & sphinx_autodoc_typehints (optional, you need it to build
documentation)

Install from source / Chipmunk Compilation

This section is only required in case you do not install easymunk from the
prebuild binary wheels (normally if you do not use pip install or you are
on a uncommon platform).

Easymunk is built on top of the c library Chipmunk. It uses CFFI to interface
with the Chipmunk library file. Because of this Chipmunk has to be compiled
together with Easymunk as an extension module.

There are basically two options, either building it automatically as part of
installation using for example Pip:

> pip install easymunk-source-dist.zip

And Pip even accepts URL arguments, which can be used to fetch directly a
commit or the latest version in main:

> pip install https://github.com/fabiommendes/easymunk/archive/refs/heads/main.zip

If you want to contribute to this project or simply want to study Easymunk’s code,
it is recommended to clone the git repository and build from there:

> git clone http://github.com/fabiommendes/easymunk

After cloning, initialize the repository with git submodules:

> cd easymunk
> git submodule update --init --recursive

This will download the Chipmunk2D source tree, which is necessary to compile the
C-extension module used by easymunk. Now that the source code is available,
build the extension module with:

> python setup.py build_ext

Finally, install it with:

> python setup.py develop --user

Easymunk requires Python 3.8+.

Contents

	Installation
	Install Easymunk

	Examples & Documentation

	Troubleshooting

	Advanced - Android Install
	Kivy

	Termux

	Advanced - Install
	Advanced - Running without installation

	Compile Chipmunk

	CFFI Installation

	Overview
	Basics

	Model your physics objects
	Object shape

	Mass, weight and units

	Looks before realism

	Game loop / moving time forward

	Object tunneling

	Unstable simulation?

	Performance

	Copy and Load/Save Easymunk objects

	Additional info

	API Reference
	easymunk Package
	easymunk.geometry Module

	easymunk.core Module

	easymunk.linalg Module

	easymunk.matplotlib Module

	easymunk.pygame Module

	easymunk.pyglet Module

	easymunk.pyxel Module

	Examples
	Jupyter Notebooks
	matplotlib_util_demo.ipynb

	newtons_cradle.ipynb

	Standalone Python
	arrows.py

	balls_and_lines.py

	basic_test.py

	bouncing_balls.py

	box2d_pyramid.py

	box2d_vertical_stack.py

	breakout.py

	constraints.py

	contact_and_no_flipy.py

	contact_with_friction.py

	copy_and_pickle.py

	damped_rotary_spring_pointer.py

	deformable.py

	flipper.py

	index_video.py

	kivy_pymunk_demo

	logo.py

	newtons_cradle.py

	platformer.py

	playground.py

	point_query.py

	py2exe_setup__basic_test.py

	py2exe_setup__breakout.py

	pygame_demo.py

	pyglet_demo.py

	shapes_for_draw_demos.py

	slide_and_pinjoint.py

	spiderweb.py

	tangram.py

	tank.py

	using_sprites.py

	using_sprites_pyglet.py

	Showcase
	Games

	Non-Games

	Papers / Science
	Cite Pymunk

	Tutorials
	Slide and Pin Joint Demo Step by Step
	Before we start

	An empty simulation

	Falling balls

	A static L

	Joints (1)

	Joints (2)

	Ending

	External Tutorials

	Benchmarks
	Micro benchmarks
	Results:
	Pymunk-Get:

	Pymunk-Callback:

	Compared to Other Physics Libraries
	Cymunk
	Results

	Advanced
	Why CFFI?

	Code Layout

	Tests

	Working with non-wrapped parts of Chipmunk

	Weak References and free Methods

	Changelog
	Easymunk 0.9.0 (2021-03-01)

	Downloads [https://pypi.python.org/pypi/pymunk/]

	Issue Tracker [https://github.com/viblo/pymunk/issues]

	Source Repository [https://github.com/viblo/pymunk]

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation

Tip

You will find the latest released version at pypi:
https://pypi.python.org/pypi/pymunk

Install Easymunk

Easymunk can be installed with pip install:

> pip install easymunk

Easymunk can also be installed with conda install, from the conda-forge channel:

> conda install -c conda-forge easymunk

Sometimes on more uncommon platforms you will need to have a GCC-compatible
c-compiler installed.

On OSX you can install one with:

> xcode-select --install

On Linux you can install one with the package manager, for example on Ubuntu
with:

> sudo apt-get install build-essential

Examples & Documentation

Because of their size the examples and the documentation are available in the
source distribution of Easymunk, but not the wheels. The source distribution is
available from PyPI at https://pypi.org/project/easymunk/#files (Named
easymunk-x.y.z.zip)

Troubleshooting

Check that no files are named easymunk.py

Check that conda install works
https://stackoverflow.com/questions/39811929/package-installed-by-conda-python-cannot-find-it

Advanced - Android Install

Easymunk can run on Android phones/tablets/computers.

Kivy

Kivy [https://kivy.org] is a open source Python library for rapid
development of applications that make use of innovative user interfaces, such
as multi-touch apps, and can run on Android (and a number of other platforms
such as Linux, Windows, OS X, iOS and Raspberry Pi).

Easymunk should work out of the box when used with Kivy. Note however that the
recipe used to build Easymunk specifies a specific version of Easymunk that might
not be the latest, see the recipe script here:
https://github.com/kivy/python-for-android/blob/master/pythonforandroid/recipes/pymunk/__init__.py

Termux

Termux [https://termux.com/] is an Android terminal emulator and Linux
environment app that works directly with no rooting or setup required.

There are no binary wheels of pymunk for Termux/Android, or for its dependency
cffi, so you will need to install a couple of packages first, before pymunk can
be installed.

	Install python and other needed dependencies (run inside Termux):

$ pkg install python python-dev clang libffi-dev

	Install pymunk with pip:

$ pip install pymunk

	Verify that it works:

$ python -m pymunk.tests test

Advanced - Install

Another option is to use the standard setup.py way, in case you have downloaded
the source distribution:

> python setup.py install

Note that this require a GCC compiler, which can be a bit tricky on Windows.
If you are on Mac OS X or Linux you will probably need to run as a privileged
user; for example using sudo:

> sudo python setup.py install

Once installed you should be able to to import pymunk just as any other
installed library. pymunk should also work just fine with virtualenv in case
you want it installed in a contained environment.

Advanced - Running without installation

If you do not want to install Easymunk, for example because you want to bundle it
with your code, its also possible to run it directly inplace. Given that you
have the source code the first thing to do is to compile chipmunk with the
inplace option, as described in the Compile Chipmunk section.

To actually import pymunk from its folder you need to do a small path hack,
since the pymunk root folder (where setup.py and the README are located) is not
part of the package. Instead you should add the path to the pymunk package
folder (where files such as space.py and body.py are located):

mycodefolder/
|-- mycode.py
|-- ...
|-- easymunk/
| |-- README.rst
| |-- setup.py
| |-- easymunk/
| | |-- space.py
| | |-- body.py
| | |-- ...
| |-- ...

Then inside you code file (mycode.py) import sys and add the pymunk folder to
the path:

import sys
sys.path.insert(1, 'easymunk')
import easymunk as mk

Compile Chipmunk

If a compiled binary library of Chipmunk that works on your platform is not
included in the release you will need to compile Chipmunk yourself. Another
reason to compile chipmunk is if you want to run it in release mode to get
rid of the debug prints it generates. If you just use pip install the
compilation will happen automatically given that a compiler is available. You
can also specifically compile Chipmunk as described below.

To compile Chipmunk:

> python setup.py build_ext

If you got the source and just want to use it directly you probably want to
compile Chipmunk in-place, that way the output is put directly into the correct
place in the source folder:

> python setup.py build_ext --inplace

On Windows you will need to use Visual Studio matching your Python version.

CFFI Installation

Sometimes you need to manually install the (non-python) dependencies of CFFI.
Usually you will notice this as a installation failure when pip tries to
install CFFI since CFFI is a dependency of Easymunk. This is not really part of
Easymunk, but a brief description is available for your convenience.

You need to install two extra dependencies for CFFI to install properly. This
can be handled by the package manager. The dependencies are python-dev and
libffi-dev. Note that they might have slightly different names depending on
the distribution, this is for Debian/Ubuntu. Just install them the normal way,
for example like this if you use apt and Pip should be able to install CFFI
properly:

> sudo apt-get install python-dev libffi-dev

Overview

Basics

There are 4 basic classes you will use in Easymunk.

	Rigid Bodies (easymunk.Body)
	A rigid body holds the physical properties of an object. (mass, position,
rotation, velocity, etc.) It does not have a shape by itself. If you’ve
done physics with particles before, rigid bodies differ mostly in that they
are able to rotate. Rigid bodies generally tend to have a 1:1 correlation
to sprites in a game. You should structure your game so that you use the
position and rotation of the rigid body for drawing your sprite.

	Collision Shapes (easymunk.Circle, easymunk.Segment and easymunk.Poly)
	By attaching shapes to bodies, you can define the a body’s shape. You can
attach many shapes to a single body to define a complex shape, or none if
it doesn’t require a shape.

	Constraints/Joints (easymunk.constraint.PinJoint, easymunk.constraint.SimpleMotor and many others)
	You can attach constraints between two bodies to constrain their behavior,
for example to keep a fixed distance between two bodies.

	Spaces (easymunk.Space)
	Spaces are the basic simulation unit in Easymunk. You add bodies, shapes
and constraints to a space, and then update the space as a whole. They
control how all the rigid bodies, shapes, and constraints interact together.

The actual simulation is done by the Space. After adding the objects that
should be simulated to the Space time is moved forward in small steps with the
easymunk.Space.step() function.

Model your physics objects

Object shape

What you see on the screen doesn’t necessarily have to be exactly the same
shape as the actual physics object. Usually the shape used for collision
detection (and other physics simulation) is much simplified version of what is
drawn on the screen. Even high end AAA games separate the collision shape from
what is drawn on screen.

There are a number of reasons why its good to separate the collision shape and
what is drawn.

	Using simpler collision shapes are faster. So if you have a very complicated
object, for example a pine tree, maybe it can make sense to simplify its
collision shape to a triangle for performance.

	Using a simpler collision shape make the simulation better. Lets say you have
a floor made of stone with a small crack in the middle. If you drag a box
over this floor it will get stuck on the crack. But if you simplify the floor
to just a plane you avoid having to worry about stuff getting stuck in the
crack.

	Making the collision shape smaller (or bigger) than the actual object makes
gameplay better. Lets say you have a player controlled ship in a shoot-em-up
type game. Many times it will feel more fun to play if you make the collision
shape a little bit smaller compared to what it should be based on how it
looks.

You can see an example of this in the using_sprites.py example included
in Easymunk. There the physics shape is a triangle, but what is drawn is 3 boxes
in a pyramid with a snake on top. Another example is in the
platformer.py example, where the player is drawn as a girl in red and
gray. However the physics shape is just a couple of circle shapes on top of
each other.

Mass, weight and units

Sometimes users of Easymunk can be confused as to what unit everything is
defined in. For example, is the mass of a Body in grams or kilograms? Easymunk
is unit-less and does not care which unit you use. If you pass in seconds to
a function expecting time, then your time unit is seconds. If you pass in
pixels to functions that expect a distance, then your unit of distance is pixels.

Then derived units are just a combination of the above. So in the case with
seconds and pixels the unit of velocity would be pixels / second.

(This is in contrast to some other physics engines which can have fixed units
that you should use)

Looks before realism

How heavy is a bird in angry birds? It doest matter, its a cartoon!

Together with the units another key insight when setting up your simulation is
to remember that it is a simulation, and in many cases the look and feel is
much more important than actual realism. So for example, if you want to model
a flipper game, the real power of the flipper and launchers doesn’t matter at
all, what is important is that the game feels “right” and is fun to use for
your users.

Sometimes it make sense to start out with realistic units, to give you a feel
for how big mass should be in comparison to gravity for example.

There are exceptions to this of course, when you actually want realism over the
looks. In the end it is up to you as a user of Easymunk to decide.

Game loop / moving time forward

The most important part in your game loop is to keep the dt argument to the
easymunk.Space.step() function constant. A constant time step makes the
simulation much more stable and reliable.

There are several ways to do this, some more complicated than others. Which one
is best for a particular program depends on the requirements.

Some good articles:

	http://gameprogrammingpatterns.com/game-loop.html

	http://gafferongames.com/game-physics/fix-your-timestep/

	http://www.koonsolo.com/news/dewitters-gameloop/

Object tunneling

Sometimes an object can pass through another object even though its not
supposed to. Usually this happens because the object is moving so fast, that
during a single call to space.step() the object moves from one side to the
other.

[image: _images/aafig-e5bd167514754e94de9bcf68b93e2d7e338b37ee.svg]There are several ways to mitigate this problem. Sometimes it might be a good
idea to do more than one of these.

	Make sure the velocity of objects never get too high. One way to do that is
to use a custom velocity function with a limit built in on the bodies that
have a tendency to move too fast:

def limit_velocity(body, gravity, damping, dt):
 max_velocity = 1000
 easymunk.Body.update_velocity(body, gravity, damping, dt)
 l = body.velocity.length
 if l > max_velocity:
 scale = max_velocity / l
 body.velocity = body.velocity * scale

body_to_limit.velocity_func = limit_velocity

Depending on the requirements it might make more sense to clamp the velocity
over multiple frames instead. Then the limit function could look like this
instead:

def limit_velocity(body, gravity, damping, dt):
 max_velocity = 1000
 easymunk.Body.update_velocity(body, gravity, damping, dt)
 if body.velocity.length > max_velocity:
 body.velocity = body.velocity * 0.99

	For objects such as bullets, use a space query such as
space.segment_query or space.segment_first.

	Use a smaller value for dt in the call to space.step. A simple way is to call
space.step multiple times each frame in your application. This will also help
to make the overall simulation more stable.

	Double check that the center of gravity is at a reasonable point for all
objects.

Unstable simulation?

Sometimes the simulation might not behave as expected. In extreme cases it can
“blow up” and parts move anywhere without logic.

There a a number of things to try if this happens:

	Make all the bodies of similar mass. It is easier for the physics engine to
handle bodies with similar weight.

	Dont let two objects with infinite mass touch each other.

	Make the center of gravity in the middle of shapes instead of at the edge.

	Very thin shapes can behave strange, try to make them a little wider.

	Have a fixed time step (see the other sections of this guide).

	Call the Space.step function several times with smaller dt instead of only
one time but with a bigger dt. (See the docs of Space.step)

	If you use a Motor joint, make sure to set its max force. Otherwise its power
will be near infinite.

	Double check that the center of gravity is at a reasonable point for all
objects.

(Most of these suggestions are the same for most physics engines, not just
Easymunk.)

Performance

Various tips that can improve performance:

	Run Python with optimizations on (will disable various useful but
non-critical asserts). python -O mycode.py

	Tweak the Space.iterations property.

	If possible let objects fall asleep with Space.sleep_time_threshold.

	Reduce usage of callback methods (like collision callbacks or custom update
functions). These are much slower than the default built in code.

Note that many times the actual simulation is quick enough, but reading out
the result after each step and manipulating the objects manually can have a
significant overhead and performance cost.

Copy and Load/Save Easymunk objects

Most Easymunk objects can be copied and/or saved with pickle from the standard
library. Since the implementation is generic it will also work to use other
serializer libraries such as jsonpickle [https://jsonpickle.github.io/] (in
contrast to pickle the jsonpickle serializes to/from json) as long as they make
use of the pickle infrastructure.

See the copy_and_pickle.py example for an example on how to save, load
and copy Easymunk objects.

Note that the version of Easymunk used must be the same for the code saving as
the verison used when loading the saved object.

Additional info

As a complement to the Easymunk docs it can be good to read the Chipmunk docs [http://chipmunk-physics.net/release/ChipmunkLatest-Docs/]. Its made for
Chipmunk, but Easymunk is build on top of Chipmunk and share most of the concepts,
with the main difference being that Easymunk is used from Python while Chipmunk is
a C-library.

API Reference

easymunk Package

Submodules

	easymunk.geometry Module

	easymunk.core Module

	easymunk.linalg Module

	easymunk.matplotlib Module

	easymunk.pygame Module

	easymunk.pyglet Module

	easymunk.pyxel Module

Easymunk

Pymunk is a easy-to-use pythonic 2d physics library that can be used whenever
you need 2d rigid body physics from Python.

Homepage: http://www.easymunk.org

This is the main containing module of easymunk. It contains among other things
the very central Space, Body and Shape classes.

	
easymunk.chipmunk_version: str = '7.0.3-080c51480f018040b567e8f0440b121ae3acbae4 '

	The Chipmunk version used with this Pymunk version.

This property does not show a valid value in the compiled documentation, only
when you actually import easymunk and do easymunk.chipmunk_version

The string is in the following format:
<cpVersionString>R<github commit of chipmunk>
where cpVersionString is a version string set by Chipmunk and the git commit
hash corresponds to the git hash of the chipmunk source from
github.com/viblo/Chipmunk2D included with easymunk.

easymunk.geometry Module

easymunk.core Module

easymunk.linalg Module

easymunk.matplotlib Module

This submodule contains helper functions to help with working with datascience
tools such as Jupyter notebooks and Streamlit via matplotlib.

	
class easymunk.matplotlib.DrawOptions(ax=None, bb=None, dot_scale=0.1)

	Bases: easymunk.drawing.DrawOptions

	
__init__(ax=None, bb=None, dot_scale=0.1)

	DrawOptions for space.debug_draw() to draw a space on a ax object.

Typical usage:

>>> space = mk.Space()
>>> space.debug_draw("matplotlib")

You can control the color of a Shape by setting shape.color to the color
you want it drawn in.

>>> shape = space.static_body.create_circle(10)
>>> shape.color = (1, 0, 0, 1) # will draw shape in red

See matplotlib_util.demo.py for a full example

	Param

	
	ax: matplotlib.Axes
	A matplotlib Axes object.

	
property ax

	
	Return type

	<class ‘Axes’>

	
draw_circle(pos, radius, angle=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw circle from position, radius, angle, and colors.

	Return type

	None

	
draw_segment(a, b, color=Color(255, 0, 0, 255))

	Draw simple thin segment.

	Return type

	None

	
draw_fat_segment(a, b, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw fat segment/capsule.

	Return type

	None

	
draw_polygon(verts, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw polygon from list of vertices.

	Return type

	None

	
draw_dot(size, pos, color)

	Draw a dot/point.

	Return type

	None

	
finalize_frame()

	Executed after debug-draw. The default implementation is a NO-OP.

	
DRAW_COLLISION_POINTS = 4

	Draw collision points.

Use on the flags property to control if collision points should be drawn or
not.

	
DRAW_CONSTRAINTS = 2

	Draw constraints.

Use on the flags property to control if constraints should be drawn or not.

	
DRAW_SHAPES = 1

	Draw shapes.

Use on the flags property to control if shapes should be drawn or not.

	
property collision_point_color

	The color of collisions.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
color_for_shape(shape)

	
	Return type

	Color

	
property constraint_color

	The color of constraints.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
draw_bb(bb)

	Draw bounding box.

	Return type

	None

	
draw_circle_shape(circle)

	Default implementation that draws a circular shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_object(obj)

	Draw Easymunk object.

	
draw_poly_shape(shape)

	Default implementation that draws a polygonal shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_segment_shape(shape)

	Default implementation that draws a segment shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_shape(shape)

	Draw shape using other drawing primitives.

	Return type

	None

	
draw_vec2d(vec)

	Draw point from vector.

	
property flags

	Bit flags which of shapes, joints and collisions should be drawn.

By default all 3 flags are set, meaning shapes, joints and collisions
will be drawn.

Example using the basic text only DebugDraw implementation (normally
you would the desired backend instead, such as
pygame_util.DrawOptions or pyglet_util.DrawOptions):

	
shape_dynamic_color = Color(52, 152, 219, 255)

	

	
shape_kinematic_color = Color(39, 174, 96, 255)

	

	
property shape_outline_color

	The outline color of shapes.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
shape_sleeping_color = Color(114, 148, 168, 255)

	

	
shape_static_color = Color(149, 165, 166, 255)

	

easymunk.pygame Module

This submodule contains helper functions to help with quick prototyping
using easymunk together with pygame.

Intended to help with debugging and prototyping, not for actual production use
in a full application. The methods contained in this module is opinionated
about your coordinate system and not in any way optimized.

	
class easymunk.pygame.DrawOptions(surface=None, flip_y=False)

	Bases: easymunk.drawing.DrawOptions

	
surface: None.Surface

	

	
draw_circle(pos, radius, angle=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw circle from position, radius, angle, and colors.

	Return type

	None

	
draw_segment(a, b, color=Color(255, 0, 0, 255))

	Draw simple thin segment.

	Return type

	None

	
draw_fat_segment(a, b, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw fat segment/capsule.

	Return type

	None

	
draw_polygon(verts, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw polygon from list of vertices.

	Return type

	None

	
draw_dot(size, pos, color)

	Draw a dot/point.

	Return type

	None

	
DRAW_COLLISION_POINTS = 4

	Draw collision points.

Use on the flags property to control if collision points should be drawn or
not.

	
DRAW_CONSTRAINTS = 2

	Draw constraints.

Use on the flags property to control if constraints should be drawn or not.

	
DRAW_SHAPES = 1

	Draw shapes.

Use on the flags property to control if shapes should be drawn or not.

	
property collision_point_color

	The color of collisions.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
color_for_shape(shape)

	
	Return type

	Color

	
property constraint_color

	The color of constraints.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
draw_bb(bb)

	Draw bounding box.

	Return type

	None

	
draw_circle_shape(circle)

	Default implementation that draws a circular shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_object(obj)

	Draw Easymunk object.

	
draw_poly_shape(shape)

	Default implementation that draws a polygonal shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_segment_shape(shape)

	Default implementation that draws a segment shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_shape(shape)

	Draw shape using other drawing primitives.

	Return type

	None

	
draw_vec2d(vec)

	Draw point from vector.

	
finalize_frame()

	Executed after debug-draw. The default implementation is a NO-OP.

	
property flags

	Bit flags which of shapes, joints and collisions should be drawn.

By default all 3 flags are set, meaning shapes, joints and collisions
will be drawn.

Example using the basic text only DebugDraw implementation (normally
you would the desired backend instead, such as
pygame_util.DrawOptions or pyglet_util.DrawOptions):

	
mouse_pos()

	Get position of the mouse pointer in pymunk coordinates.

	Return type

	Vec2d

	
shape_dynamic_color = Color(52, 152, 219, 255)

	

	
shape_kinematic_color = Color(39, 174, 96, 255)

	

	
property shape_outline_color

	The outline color of shapes.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
shape_sleeping_color = Color(114, 148, 168, 255)

	

	
shape_static_color = Color(149, 165, 166, 255)

	

	
to_pygame(p, surface=None)

	Convenience method to convert pymunk coordinates to pygame surface
local coordinates.

Note that in case positive_y_is_up is False, this function wont actually do
anything except converting the point to integers.

	Return type

	Vec2d

	
from_pygame(p)

	Convenience method to convert pygame surface local coordinates to
pymunk coordinates

	Return type

	Vec2d

easymunk.pyglet Module

This submodule contains helper functions to help with quick prototyping
using easymunk together with pyglet.

Intended to help with debugging and prototyping, not for actual production use
in a full application. The methods contained in this module is opinionated
about your coordinate system and not very optimized (they use batched
drawing, but there is probably room for optimizations still).

	
class easymunk.pyglet.DrawOptions(**kwargs)

	Bases: easymunk.drawing.DrawOptions

	
draw_circle(pos, radius, angle=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw circle from position, radius, angle, and colors.

	Return type

	None

	
draw_segment(a, b, color=Color(255, 0, 0, 255))

	Draw simple thin segment.

	Return type

	None

	
draw_fat_segment(a, b, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw fat segment/capsule.

	Return type

	None

	
draw_polygon(verts, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0, 255))

	Draw polygon from list of vertices.

	Return type

	None

	
draw_dot(size, pos, color)

	Draw a dot/point.

	Return type

	None

	
DRAW_COLLISION_POINTS = 4

	Draw collision points.

Use on the flags property to control if collision points should be drawn or
not.

	
DRAW_CONSTRAINTS = 2

	Draw constraints.

Use on the flags property to control if constraints should be drawn or not.

	
DRAW_SHAPES = 1

	Draw shapes.

Use on the flags property to control if shapes should be drawn or not.

	
property collision_point_color

	The color of collisions.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
color_for_shape(shape)

	
	Return type

	Color

	
property constraint_color

	The color of constraints.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
draw_bb(bb)

	Draw bounding box.

	Return type

	None

	
draw_circle_shape(circle)

	Default implementation that draws a circular shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_object(obj)

	Draw Easymunk object.

	
draw_poly_shape(shape)

	Default implementation that draws a polygonal shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_segment_shape(shape)

	Default implementation that draws a segment shape.

This function is not affected by overriding the draw method of shape.

	Return type

	None

	
draw_shape(shape)

	Draw shape using other drawing primitives.

	Return type

	None

	
draw_vec2d(vec)

	Draw point from vector.

	
finalize_frame()

	Executed after debug-draw. The default implementation is a NO-OP.

	
property flags

	Bit flags which of shapes, joints and collisions should be drawn.

By default all 3 flags are set, meaning shapes, joints and collisions
will be drawn.

Example using the basic text only DebugDraw implementation (normally
you would the desired backend instead, such as
pygame_util.DrawOptions or pyglet_util.DrawOptions):

	
shape_dynamic_color = Color(52, 152, 219, 255)

	

	
shape_kinematic_color = Color(39, 174, 96, 255)

	

	
property shape_outline_color

	The outline color of shapes.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

	
shape_sleeping_color = Color(114, 148, 168, 255)

	

	
shape_static_color = Color(149, 165, 166, 255)

	

easymunk.pyxel Module

This submodule contains helper functions to help with quick prototyping
using easymunk together with pyxel.

Intended to help with debugging and prototyping, not for actual production use
in a full application. The methods contained in this module is opinionated
about your coordinate system and not very optimized (they use batched
drawing, but there is probably room for optimizations still).

Examples

Here you will find a list of the included examples. Each example have a short
description and a screenshot (if applicable).

To look at the source code of an example open it on github by following
the link. The examples are also included in the source distribution of Easymunk
(but not if you install using the wheel file). You can find the source
distribution at PyPI, https://pypi.org/project/pymunk/#files (file named pymunk-x.y.z.zip).

Jupyter Notebooks

There are a couple examples that are provided as Jupyter Notebooks (.ipynb).
They are possible to either view online in a browser directly on github, or
opened as a Notebook.

matplotlib_util_demo.ipynb

Displays the same space as the pygame and pyglet draw demos, but using
matplotlib and the notebook.

Source: examples/matplotlib_util_demo.ipynb [https://github.com/viblo/pymunk/blob/master/examples/matplotlib_util_demo.ipynb]

[image: _images/matplotlib_util_demo.png]

newtons_cradle.ipynb

Similar simulation as newtons_cradle.py, but this time as a Notebook.
Compared to the draw demo this demo will output a animation of the simulated
space.

Source: examples/newtons_cradle.ipynb [https://github.com/viblo/pymunk/blob/master/examples/newtons_cradle.ipynb]

 Showcase

Showcase

This page shows some uses of Easymunk. If you also have done something using
Easymunk please let me know and I can add it here!

Games

	[image: _images/My_Sincerest_Apologies.png]

	My Sincerest Apologies [https://pyweek.org/e/wasabi24/]

made by The Larry and Dan show (mauve, larry). Retrieved
2018-10-25

Winner of PyWeek 24 (Overall Team Entry)

A game of fun, shooting, and “I’m sorry to put you through this”.

A fabricator robot on Mars was supposed to make a bunch of robots!
But it got lazy and made robots that could make other robots. And
it made them smarter than they should have been. Now they’ve all
gone off and hidden away behind various tanks and computers.

Happily, he knew how to construct you, a simple fighting robot.
It’s your job to clean out each area!

See Daniel Popes teardown here [http://mauveweb.co.uk/posts/2018/03/my-sincerest-apologies-teardown.html]
for additional details

	[image: _images/beneath-the-ice.png]

	Beneath the Ice [https://pyweek.org/e/chimera22/]

made by Team Chimera (mit-mit, Lucid Design Ar). Retrieved
2016-09-25

Winner of PyWeek 22 (Overall Team Entry)

Beneath the Ice is a submarine exploration game and puzzle solving
adventure! Uncover a mysterious pariah who can’t let you discover his
secrets, who can’t let you in! Team Chimera take 3!

	[image: _images/invisipin.png]

	Invisipin [https://pyweek.org/e/Tee-py20/]

made by Tee. Retrieved 2016-01-25

Winner of PyWeek 20 (Overall Individual Entry)

A pachinko-like puzzle game. Play some balls and watch their movement
carefully (i.e. collect data) to reconstruct the board!

	[image: _images/angry-birds-python.png]

	Angry Birds in Python [https://github.com/estevaofon/angry-birds-python]

made by Estevao Fonseca. Retrieved 2016-10-30

Angry Birds game written in python using pygame and pymunk

	[image: _images/SubTerrex.png]

	SubTerrex [http://www.pygame.org/project-SubTerrex-2389-.html]

made by Paul Paterson. Retrieved 2016-01-25

A cave exploration game where you explore caves by descending into them
on ropes.

Non-Games

	[image: _images/PySimpleGUI.png]

	PySimpleGUI Desktop Demo [https://github.com/PySimpleGUI/PySimpleGUI]

made by PySimpleGUI/Mike. Retrieved 2020-10-13

Demo of using PySimpleGUI together with Easymunk to create bouncing
balls directly on the desktop, thanks to a transparent container
window.

	[image: _images/legged_robot.png]

	Legged robot using differential evolution and perception [https://www.youtube.com/watch?v=n-OCy6ToLsU&feature=youtu.be]

made by Nav. Retrieved 2020-08-20

Legged robot first using Differential Evolution to navigate terrain
and then learning to recognise the world via perception from its
senses.

	[image: _images/ambient-chimes.png]

	Simulation of ambient chimes | Circle in a hexagon [https://youtu.be/7MRJS8ZV9VA]

made by Jan Abraham.Retrieved 2019-11-17

An ambient piano chord produced by the simulation of a bouncing ball.
The calculations were carried out using pymunk library.
Tuning: Kirnberger III

	[image: _images/aimoveneat.png]

	I teach AI to move with using NEAT [https://youtu.be/ipWIH1g9DSw]

made by Cheesy AI. Retrieved 2019-11-17

Recently I learned Easymunk 2d physics library.
It is very cool so with that I made 2d Humanoid for my AI.
Today I’m going to teach AI to move forward with NEAT.
NEAT is a genetic algorithm for the generation of evolving artificial
neural networks.
Results are quite weird but it will be fun.
Have fun!

	[image: _images/carconf.png]

	Car Configuration with Differential Evolotion [https://youtu.be/7ok4ESgrKg0]

made by Nav. Retrieved 2019-05-05

Among the simplest AI algorithms: Differential Evolution. Brought to
life with Easymunk and Pygame. Each car has an objective of reaching the
end of the track, but has only 15 seconds to do so. They explore the
multidimensional search space of vehicle speed, chassis width, chassis
height and wheel radius, to find a variety of configurations among
which few are successful in helping the car cross the track.

Source code available at github at https://github.com/nav9/evolutionaryCarRace

	[image: _images/virtuaplant.png]

	VirtuaPlant [https://wroot.org/projects/virtuaplant/]

made by Jan Seidl. Retrieved 2018-06-13

VirtuaPlant is a Industrial Control Systems simulator which adds a
“similar to real-world control logic” to the basic “read/write tags”
feature of most PLC simulators. Paired with a game library and 2d
physics engine, VirtuaPlant is able to present a GUI simulating the
“world view” behind the control system allowing the user to have a
vision of the would-be actions behind the control systems.

	[image: _images/arcade-library.png]

	The Python Arcade Library [http://arcade.academy/examples/index.html]

made by Paul. Retrieved 2018-03-05

Arcade is an easy-to-learn Python library for creating 2D video games.
It is not directly tied to Easymunk, but includes a number of examples
and helper classes to use Easymunk physics from a Arcade application.

	[image: _images/billiARds.png]

	billiARds A Game of Augmented Reality Pool [https://youtu.be/5ft3SDvuhgw]

made by Alex Baikovitz. Retrieved 2017-05-21

Alex built billiARds for his 15-112 (Fundamentals of Programming and
Computer Science) term project at Carnegie Mellon University.
Made in Python3 using OpenCV, Pygame, and Easymunk. Users can simply use
a pool cue stick and run the program on any ordinary surface.

	[image: _images/pyphysicssandbox.png]

	pyPhysicsSandbox [https://github.com/jshaffstall/PyPhysicsSandbox]

made by Jay Shaffstall. Retrieved 2017-01-01

pyPhysicsSandbox is a simple wrapper around Pymunk that makes it easy
to write code to explore 2D physics simulations. It’s intended for use
in introductory programming classrooms.

	[image: _images/carrom-rl.png]

	Carrom Simulation [https://github.com/samiranrl/Carrom_rl]

made by Samiran Roy. Retrieved 2016-10-27

An open source Carrom Simulator interface for testing
intelligent/learning agents. It provides an interface that allows
you to design agents that that play carrom. It is built in python,
using pygame + pymunk. This is the course project for
CS 747 - Foundations of Intelligent and Learning Agents, taught by
Prof. Shivaram Kalyanakrishnan at IIT Bombay.

	[image: _images/reinforcement-learning-car.png]

	Self Driving Car [https://github.com/harvitronix/reinforcement-learning-car]

made by Matt Harvey. Retrieved 2016-08-07

A project that trains a virtual car to how to move an object around a
screen (drive itself) without running into obstacles using a type of
reinforcement learning called Q-Learning.

Papers / Science

Pymunk has been used or referenced in a number of scientific papers.

List of papers which has used or mentioned Pymunk:

	Mori, Hiroki, Masayuki Masuda, and Tetsuya Ogata.
“Tactile-based curiosity maximizes tactile-rich object-oriented actions even without any extrinsic rewards.”
In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1-7. IEEE, 2020.

	Jiang, Lincheng.
“A Computational Method to Generate One-story Floor Plans for Nursing Homes Based on Daylight Hour Potential and Shortest Path of Circulations.”
(2020).

	Chen, Ricky TQ, Brandon Amos, and Maximilian Nickel.
“Learning Neural Event Functions for Ordinary Differential Equations.”
arXiv preprint arXiv:2011.03902 (2020).

	Jain, Ayush, Andrew Szot, and Joseph J. Lim.
“Generalization to New Actions in Reinforcement Learning.”
arXiv preprint arXiv:2011.01928 (2020).

	Petitgirard, Julien, Tony Piguet, Philippe Baucour, Didier Chamagne, Eric Fouillien, and Jean-Christophe Delmare.
“Steady State and 2D Thermal Equivalence Circuit for Winding Heads—A New Modelling Approach.”
Mathematical and Computational Applications 25, no. 4 (2020): 70.

	Hook, Joosep, Seif El-Sedky, Varuna De Silva, and Ahmet Kondoz.
“Learning Data-Driven Decision-Making Policies in Multi-Agent Environments for Autonomous Systems.”
Cognitive Systems Research (2020).

	Matthews, Elizabeth A., and Juan E. Gilbert.
“ATLAS CHRONICLE: DEVELOPMENT AND VERIFICATION OF A SYSTEM FOR PROCEDURAL GENERATION OF STORY-DRIVEN GAMES.”

	Ipe, Navin.
“Context and event-based cognitive memory constructs for embodied intelligence machines.”

	Ipe, Navin.
“An In-Memory Physics Environment as a World Model for Robot Motion Planning.”
(2020).

	Li, Yunzhu, Antonio Torralba, Animashree Anandkumar, Dieter Fox, and Animesh Garg.
“Causal Discovery in Physical Systems from Videos.”
arXiv preprint arXiv:2007.00631 (2020).

	Suh, H. J., and Russ Tedrake.
“The Surprising Effectiveness of Linear Models for Visual Foresight in
Object Pile Manipulation.”
arXiv preprint arXiv:2002.09093 (2020).

	Vos, Bastiaan.
“The Sailing Tug: A feasibility study on the application of Wind-Assisted
towing of the Thialf.”
(2019).

	Wong, Eric C.
“Example Based Hebbian Learning may be sufficient to support Human
Intelligence.”
bioRxiv (2019): 758375.

	Manoury, Alexandre, and Cédric Buche.
“Hierarchical Affordance Discovery using Intrinsic Motivation.” 2019.

	Mounsif, Mehdi, Sebastien Lengagne, Benoit Thuilot, and Lounis Adouane.
“Universal Notice Network: Transferable Knowledge Among Agents.”
In 2019 6th International Conference on Control, Decision and Information
Technologies (CoDIT), pp. 563-568. IEEE, 2019.

	Du, Yilun, and Karthik Narasimhan.
“Task-Agnostic Dynamics Priors for Deep Reinforcement Learning.”
In International Conference on Machine Learning, pp. 1696-1705. 2019.

	Siegel, Max Harmon.
“Compositional simulation in perception and cognition.”
PhD diss., Massachusetts Institute of Technology, 2018.

	Caselles-Dupré, Hugo, Louis Annabi, Oksana Hagen, Michael Garcia-Ortiz, and
David Filliat.
“Flatland: a Lightweight First-Person 2-D Environment for Reinforcement Learning.”
arXiv preprint arXiv:1809.00510 (2018).

	Yingzhen, Li, and Stephan Mandt.
“Disentangled Sequential Autoencoder.”
In International Conference on Machine Learning, pp. 5656-5665. 2018.

	Melnik, Andrew.
“Sensorimotor Processing in the Human Brain and in Cognitive Architectures.”
(2018).

	Li, Yingzhen, and Stephan Mandt.
“A Deep Generative Model for Disentangled Representations of Sequential Data.”
arXiv preprint arXiv:1803.02991 (2018).

	Hongsuk Yi, Eunsoo Park and Seungil Kim (이홍석, 박은수, and 김승일.)
“Deep Reinforcement Learning for Autonomous Vehicle Driving”
(“자율주행자동차 주행을 위한 심화강화학습.”)
2017 Korea Software Engineering Conference
(한국정보과학회 학술발표논문집 (2017): 784-786.)

	Fraccaro, Marco, Simon Kamronn, Ulrich Paquet, and Ole Winther.
“A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
Learning.”
arXiv preprint arXiv:1710.05741 (2017).

	Kister, Ulrike, Konstantin Klamka, Christian Tominski, and Raimund Dachselt.
“GraSp: Combining Spatially‐aware Mobile Devices and a Display Wall for Graph
Visualization and Interaction.”
In Computer Graphics Forum, vol. 36, no. 3, pp. 503-514. 2017.

	Kim, Neil H., Gloria Lee, Nicholas A. Sherer, K. Michael Martini, Nigel
Goldenfeld, and Thomas E. Kuhlman.
“Real-time transposable element activity in individual live cells.”
Proceedings of the National Academy of Sciences 113, no. 26 (2016): 7278-7283.

	Baheti, Ashutosh, and Arobinda Gupta.
“Non-linear barrier coverage using mobile wireless sensors.”
In Computers and Communications (ISCC), 2017 IEEE Symposium on, pp. 804-809.
IEEE, 2017.

	Espeso, David R., Esteban Martínez-García, Victor De Lorenzo, and Ángel
Goñi-Moreno.
“Physical forces shape group identity of swimming Pseudomonas putida cells.”
Frontiers in Microbiology 7 (2016).

	Goni-Moreno, Angel, and Martyn Amos.
“DiSCUS: A Simulation Platform for Conjugation Computing.”
In International Conference on Unconventional Computation and Natural
Computation, pp. 181-191. Springer International Publishing, 2015.

	Amos, Martyn, et al.
“Bacterial computing with engineered populations.”
Phil. Trans. R. Soc. A 373.2046 (2015): 20140218.

	Crane, Beth, and Stephen Sherratt.
“rUNSWift 2D Simulator; Behavioural Simulation Integrated with the rUNSWift
Architecture.”
UNSW School of Computer Science and Engineering (2013).

	Miller, Chreston Allen.
“Structural model discovery in temporal event data streams.”
Diss. Virginia Polytechnic Institute and State University, 2013.

	Pumar García, César.
“Simulación de evolución dirigida de bacteriófagos en poblaciones de bacterias
en 2D.”
(2013).

	Simoes, Manuel, and Caroline GL Cao.
“Leonardo: a first step towards an interactive decision aid for port-placement
in robotic surgery.”
Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on.
IEEE, 2013.

	Goni-Moreno, Angel, and Martyn Amos.
“Discrete modelling of bacterial conjugation dynamics.”
arXiv preprint arXiv:1211.1146 (2012).

	Matthews, Elizabeth A.
“ATLAS CHRONICLE: A STORY-DRIVEN SYSTEM TO CREATE STORY-DRIVEN MAPS.”
Diss. Clemson University, 2012.

	Matthews, Elizabeth, and Brian Malloy.
“Procedural generation of story-driven maps.”
Computer Games (CGAMES), 2011 16th International Conference on. IEEE, 2011.

	Miller, Chreston, and Francis Quek.
“Toward multimodal situated analysis.”
Proceedings of the 13th international conference on multimodal interfaces.
ACM, 2011.

	Verdie, Yannick.
“Surface gesture & object tracking on tabletop devices.”
Diss. Virginia Polytechnic Institute and State University, 2010.

	Agrawal, Vivek, and Ryan Kerwin.
“Dynamic Robot Path Planning Among Crowds in Emergency Situations.”

List last updated 2020-11-17. If something is missing or wrong, please contact
me!

Cite Pymunk

If you use Pymunk in a published work and want to cite it, below is a bibtex
example. Feel free to modify to fit your style. (Make sure to modify the
version number if included.):

@misc{pymunk,
 author = {Victor Blomqvist},
 title = {Pymunk: A easy-to-use pythonic rigid body 2d physics library (version 6.0.0)},
 year = {2007},
 url = {https://www.pymunk.org},
}

 Tutorials

Tutorials

Easymunk has one tutorial that show a simple simulation from start to end.

After reading it make sure to also check out the Examples as
most of them are easy to follow and showcase many of the things you can do with
easymunk.

	Slide and Pin Joint Demo Step by Step

External Tutorials

If you have made a tutorial that is using Easymunk in any way and want it
mentioned here please send me a link and I will happily add it. I also
accept full tutorials to include directly here if you prefer, as long as they
are of reasonable quality and style. Check the source to see how the existing
ones are built.

 Slide and Pin Joint Demo Step by Step

Slide and Pin Joint Demo Step by Step

This is a step by step tutorial explaining the demo slide_and_pinjoint.py
included in easymunk. You will find a screenshot of it in the list of
examples.
It is probably a good idea to have the file near by if I
miss something in the tutorial or something is unclear.

[image: ../_images/slide_and_pinjoint1.png]

Before we start

For this tutorial you will need:

	Python (of course)

	Pygame (found at www.pygame.org)

	Easymunk

Pygame is required for this tutorial and some of the included demos, but it
is not required to run just easymunk. Easymunk should work just fine with other
similar libraries as well, for example you could easily translate this
tutorial to use Pyglet instead.

Easymunk is built on top of the 2d physics library Chipmunk. Chipmunk itself
is written in C meaning Easymunk need to call into the c code. The Cffi
library helps with this, however if you are on a platform that I haven’t been
able to compile it on you might have to do it yourself. The good news is that
it is very easy to do, in fact if you got Easymunk by Pip install its arelady
done!

When you have easymunk installed, try to import it from the python prompt to
make sure it works and can be imported:

>>> import easymunk

More information on installation can be found here:
Installation

If it doesnt work or you have some kind of problem, feel free to write a post
in the chipmunk forum, contact me directly or add your problem to the issue
tracker: Contact & Support

An empty simulation

Ok, lets start.
Chipmunk (and therefore Easymunk) has a couple of central concepts, which is
explained pretty good in this citation from the Chipmunk docs:

	Rigid bodies
	A rigid body holds the physical properties of an object. (mass, position,
rotation, velocity, etc.) It does not have a shape by itself. If you’ve
done physics with particles before, rigid bodies differ mostly in that they
are able to rotate.

	Collision shapes
	By attaching shapes to bodies, you can define the body’s shape. You can
attach many shapes to a single body to define a complex shape, or none if
it doesn’t require a shape.

	Constraints/joints
	You can attach joints between two bodies to constrain their behavior.

	Spaces
	Spaces are the basic simulation unit in Chipmunk. You add bodies, shapes
and joints to a space, and then update the space as a whole.

The documentation for Chipmunk can be found here:
http://chipmunk-physics.net/release/ChipmunkLatest-Docs/
It is for the c-library but is a good complement to the Easymunk documentation
as the concepts are the same, just that Easymunk is more pythonic to use.

The API documentation for Easymunk can be found here: API Reference.

Anyway, we are now ready to write some code:

import sys
import pygame
import easymunk #1

def main():
 pygame.init()
 screen = pygame.display.set_mode((600, 600))
 pygame.display.set_caption("Joints. Just wait and the L will tip over")
 clock = pygame.time.Clock()

 space = easymunk.Space() #2
 space.gravity = (0.0, 900.0)

 while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit(0)
 elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
 sys.exit(0)

 screen.fill((255,255,255))

 space.step(1/50.0) #3

 pygame.display.flip()
 clock.tick(50)

if __name__ == '__main__':
 sys.exit(main())

The code will display a blank window, and will run a physics simulation of an
empty space.

	We need to import easymunk in order to use it…

	We then create a space and set its gravity to something good. Remember
that what is important is what looks good on screen, not what the real
world value is. 900 will make a good looking simulation, but feel free
to experiment when you have the full code ready.

	In our game loop we call the step() function on our space. The step
function steps the simulation one step forward in time each time called.

Note

It is best to keep the step size constant and not adjust it depending on the
framerate. The physic simulation will work much better with a constant step
size.

Falling balls

The easiest shape to handle (and draw) is the circle. Therefore our next
step is to make a ball spawn once in while. In many of the example demos all
code is in one big pile in the main() function as they are so small and easy,
but I will extract some methods in this tutorial to make it more easy to
follow. First, a function to add a ball to a space:

def add_ball(space):
 mass = 3
 radius = 25
 body = easymunk.Body() # 1
 x = random.randint(120, 300)
 body.position = x, 50 # 2
 shape = easymunk.Circle(body, radius) # 3
 shape.mass = mass # 4
 shape.friction = 1
 space.add(body, shape) # 5
 return shape

	We first create the body of the ball.

	And we set its position

	And in order for it to collide with things, it needs to have one (or many)
collision shape(s).

	All bodies must have their moment of inertia set. In most cases its
easiest to let Easymunk handle calculation from shapes. So we set the mass of
each shape, and then when added to space the body will automatically get a
proper mass and moment set. Another option is to set the density of each
shape, or its also possible to set the values directly on the body (or
even adjust them afterwards).

	To make the balls roll we set friction on the shape. (By default its 0).

	Finally we add the body and shape to the space to include it in our
simulation. Note that the body must always be added to the space before or
at the same time as any shapes attached to it.

Now that we can create balls we want to display them. Either we can use the
built in pymunk_util package do draw the whole space directly, or we can do it
manually. The debug drawing functions included with Easymunk are good for putting
something together easy and quickly, while for example a polished game most
probably will want to make its own drawing code.

If we want to draw manually, our draw function could look something like this:

def draw_ball(screen, ball):
 p = int(ball.body.position.x), int(ball.body.position.y)
 pygame.draw.circle(screen, (0,0,255), p, int(ball.radius), 2)

And then called in this way (given we collected all the ball shapes in a list
called balls):

for ball in balls:
 draw_ball(screen, ball)

However, as we use pygame in this example we can instead use the debug_draw
method already included in Easymunk to simplify a bit. It first needs to be
imported, and next we have to create a DrawOptions object with the options
(what surface to draw on in the case of Pygame):

import easymunk.pygame_util
...
draw_options = easymunk.pygame_util.DrawOptions(screen)

And after that when we want to draw all our shapes we would just do it in this
way:

space.debug_draw(draw_options)

Most of the examples included with Easymunk uses this way of drawing.

With the add_ball function and the debug_draw call and a little code to spawn
balls you should see a couple of balls falling. Yay!

import sys, random
random.seed(1) # make the simulation the same each time, easier to debug
import pygame
import easymunk
import easymunk.pygame_util

#def add_ball(space):

def main():
 pygame.init()
 screen = pygame.display.set_mode((600, 600))
 pygame.display.set_caption("Joints. Just wait and the L will tip over")
 clock = pygame.time.Clock()

 space = easymunk.Space()
 space.gravity = (0.0, 900.0)

 balls = []
 draw_options = easymunk.pygame_util.DrawOptions(screen)

 ticks_to_next_ball = 10
 while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit(0)
 elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
 sys.exit(0)

 ticks_to_next_ball -= 1
 if ticks_to_next_ball <= 0:
 ticks_to_next_ball = 25
 ball_shape = add_ball(space)
 balls.append(ball_shape)

 space.step(1/50.0)

 screen.fill((255,255,255))
 space.debug_draw(draw_options)

 pygame.display.flip()
 clock.tick(50)

if __name__ == '__main__':
 main()

A static L

Falling balls are quite boring. We don’t see any physics simulation except
basic gravity, and everyone can do gravity without help from a physics library.
So lets add something the balls can land on, two static lines forming an L. As
with the balls we start with a function to add an L to the space:

def add_static_L(space):
 body = easymunk.Body(body_type = easymunk.Body.STATIC) # 1
 body.position = (300, 300)
 l1 = easymunk.Segment(body, (-150, 0), (255, 0), 5) # 2
 l2 = easymunk.Segment(body, (-150, 0), (-150, -50), 5)
 l1.friction = 1 # 3
 l2.friction = 1

 space.add(body, l1, l2) # 4
 return l1,l2

	We create a “static” body. The important step is to never add it to the
space like the dynamic ball bodies. Note how static bodies are created by
setting the body_type of the body. Many times its easier to use the
already existing static body in the space (space.static_body), but we
will make the L shape dynamic in just a little bit.

	A line shaped shape is created here.

	Set the friction.

	Again, we only add the segments, not the body to the space.

Since we use Space.debug_draw to draw the space we dont need to do any special
draw code for the Segments, but I still include a possible draw function here
just to show what it could look like:

def draw_lines(screen, lines):
 for line in lines:
 body = line.body
 pv1 = body.position + line.a.rotated(body.angle) # 1
 pv2 = body.position + line.b.rotated(body.angle)
 p1 = to_pygame(pv1) # 2
 p2 = to_pygame(pv2)
 pygame.draw.lines(screen, THECOLORS["lightgray"], False, [p1,p2])

	In order to get the position with the line rotation we use this calculation.
line.a is the first endpoint of the line, line.b the second. At the moment
the lines are static, and not rotated so we don’t really have to do this
extra calculation, but we will soon make them move and rotate.

	This is a little function to convert coordinates from easymunk to pygame
world. Now that we have it we can use it in the draw_ball() function as
well.

def to_pygame(p):
 """Small helper to convert easymunk vec2d to pygame integers"""
 return round(p.x), round(p.y)

With the full code we should something like the below, and now we should see
an inverted L shape in the middle will balls spawning and hitting the shape.

import sys, random
random.seed(1) # make the simulation the same each time, easier to debug
import pygame
import easymunk
import easymunk.pymunk_util

#def to_pygame(p):
#def add_ball(space):
#def add_static_l(space):

def main():
 pygame.init()
 screen = pygame.display.set_mode((600, 600))
 pygame.display.set_caption("Joints. Just wait and the L will tip over")
 clock = pygame.time.Clock()

 space = easymunk.Space()
 space.gravity = (0.0, 900.0)

 lines = add_static_L(space)
 balls = []
 draw_options = easymunk.pygame_util.DrawOptions(screen)

 ticks_to_next_ball = 10
 while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit(0)
 elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
 sys.exit(0)

 ticks_to_next_ball -= 1
 if ticks_to_next_ball <= 0:
 ticks_to_next_ball = 25
 ball_shape = add_ball(space)
 balls.append(ball_shape)

 space.step(1/50.0)

 screen.fill((255,255,255))
 space.debug_draw(draw_options)

 pygame.display.flip()
 clock.tick(50)

if __name__ == '__main__':
 main()

Joints (1)

A static L shape is pretty boring. So lets make it a bit more exciting by
adding two joints, one that it can rotate around, and one that prevents it from
rotating too much. In this part we only add the rotation joint, and in the next
we constrain it. As our static L shape won’t be static anymore we also rename
the function to add_L().

def add_L(space):
 rotation_center_body = easymunk.Body(body_type=easymunk.Body.STATIC) # 1
 rotation_center_body.position = (300, 300)

 body = easymunk.Body()
 body.position = (300, 300)
 l1 = easymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)
 l2 = easymunk.Segment(body, (-150.0, 0), (-150.0, -50.0), 5.0)
 l1.friction = 1
 l2.friction = 1
 l1.mass = 8 # 2
 l2.mass = 1
 rotation_center_joint = easymunk.PinJoint(
 body, rotation_center_body, (0, 0), (0, 0)
) # 3

 space.add(l1, l2, body, rotation_center_joint)
 return l1, l2

	This is the rotation center body. Its only purpose is to act as a static
point in the joint so the line can rotate around it. As you see we never add
any shapes to it.

	The L shape will now be moving in the world, and therefor it can no longer
be a static body. Here we see the benefit of setting the mass on the
shapes instead of the body, no need to figure out how big the moment
should be, and Easymunk will automatically calculate the center of gravity.

	A pin joint allow two objects to pivot about a single point. In our case one
of the objects will be stuck to the world.

Joints (2)

In the previous part we added a pin joint, and now its time to constrain the
rotating L shape to create a more interesting simulation. In order to do this
we modify the add_L() function:

def add_L(space):
 rotation_center_body = easymunk.Body(body_type = pymunk.Body.STATIC)
 rotation_center_body.position = (300,300)

 rotation_limit_body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1
 rotation_limit_body.position = (200,300)

 body = pymunk.Body()
 body.position = (300,300)
 l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)
 l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, -50.0), 5.0)
 l1.friction = 1
 l2.friction = 1
 l1.mass = 8
 l2.mass = 1

 rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0))
 joint_limit = 25
 rotation_limit_joint = pymunk.SlideJoint(body, rotation_limit_body, (-100,0), (0,0), 0, joint_limit) # 2

 space.add(l1, l2, body, rotation_center_joint, rotation_limit_joint)
 return l1,l2

	We add a body..

	Create a slide joint. It behaves like pin joints but have a minimum and
maximum distance. The two bodies can slide between the min and max, and in
our case one of the bodies is static meaning only the body attached with the
shapes will move.

Ending

You might notice that we never delete balls. This will make the simulation
require more and more memory and use more and more cpu, and this is of course
not what we want. So in the final step we add some code to remove balls from
the simulation when they are bellow the screen.

balls_to_remove = []
for ball in balls:
 if ball.body.position.y < 0: # 1
 balls_to_remove.append(ball) # 2

for ball in balls_to_remove:
 space.remove(ball, ball.body) # 3
 balls.remove(ball) # 4

	Loop the balls and check if the body.position is less than 0.

	If that is the case, we add it to our list of balls to remove.

	To remove an object from the space, we need to remove its shape and its
body.

	And then we remove it from our list of balls.

And now, done! You should have an inverted L shape in the middle of the screen
being filled will balls, tipping over releasing them, tipping back and start
over. You can check slide_and_pinjoint.py included in pymunk, but it
doesn’t follow this tutorial exactly as I factored out a couple of blocks
to functions to make it easier to follow in tutorial form.

If anything is unclear, not working feel free to raise an issue on github. If
you have an idea for another tutorial you want to read, or some example code
you want to see included in pymunk, please write it somewhere (like in the
chipmunk forum)

The full code for this tutorial is:

import sys, random
random.seed(1) # make the simulation the same each time, easier to debug
import pygame
import pymunk
import pymunk.pygame_util

def add_ball(space):
 """Add a ball to the given space at a random position"""
 mass = 3
 radius = 25
 inertia = pymunk.moment_for_circle(mass, 0, radius, (0,0))
 body = pymunk.Body(mass, inertia)
 x = random.randint(120,300)
 body.position = x, 50
 shape = pymunk.Circle(body, radius, (0,0))
 shape.friction = 1
 space.add(body, shape)
 return shape

def add_L(space):
 """Add a inverted L shape with two joints"""
 rotation_center_body = pymunk.Body(body_type = pymunk.Body.STATIC)
 rotation_center_body.position = (300,300)

 rotation_limit_body = pymunk.Body(body_type = pymunk.Body.STATIC)
 rotation_limit_body.position = (200,300)

 body = pymunk.Body(10, 10000)
 body.position = (300,300)
 l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)
 l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, -50.0), 5.0)
 l1.friction = 1
 l2.friction = 1
 l1.mass = 8
 l2.mass = 1

 rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0))
 joint_limit = 25
 rotation_limit_joint = pymunk.SlideJoint(body, rotation_limit_body, (-100,0), (0,0), 0, joint_limit)

 space.add(l1, l2, body, rotation_center_joint, rotation_limit_joint)
 return l1,l2

def main():
 pygame.init()
 screen = pygame.display.set_mode((600, 600))
 pygame.display.set_caption("Joints. Just wait and the L will tip over")
 clock = pygame.time.Clock()

 space = pymunk.Space()
 space.gravity = (0.0, 900.0)

 lines = add_L(space)
 balls = []
 draw_options = pymunk.pygame_util.DrawOptions(screen)

 ticks_to_next_ball = 10
 while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit(0)
 elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
 sys.exit(0)

 ticks_to_next_ball -= 1
 if ticks_to_next_ball <= 0:
 ticks_to_next_ball = 25
 ball_shape = add_ball(space)
 balls.append(ball_shape)

 screen.fill((255,255,255))

 balls_to_remove = []
 for ball in balls:
 if ball.body.position.y > 550:
 balls_to_remove.append(ball)

 for ball in balls_to_remove:
 space.remove(ball, ball.body)
 balls.remove(ball)

 space.debug_draw(draw_options)

 space.step(1/50.0)

 pygame.display.flip()
 clock.tick(50)

if __name__ == '__main__':
 main()

 Benchmarks

Benchmarks

To get a grip of the actual performance of Easymunk this page contains a number
of benchmarks.

The full code of all benchmarks are available under the benchmarks [https://github.com/viblo/easymunk/blob/master/benchmarks] folder.

Note that the the benchmarks are not yet updated for Easymunk 6.0, but tests
look promising.

Micro benchmarks

In order to measure the overhead created by Easymunk in the most common cases I
have created two micro benchmarks. They should show the speed of the actual
wrapping code, which can tell how big overhead Easymunk creates, and how big
difference different wrapping methods does.

The most common thing a typical program using Easymunk does is to read out the
position and angle from a Easymunk object. Usually this is done each frame for
every object in the simulation, so this is a important factor in how fast
something will be.

Given this our first test is:

t += b.position.x + b.position.y + b.angle

(see pymunk-get.py)

Running it is simple, for example like this for pymunk 4.0:

> python -m pip install pymunk==4.0
> python pymunk-get.py

The second test we do is based on the second heavy thing we can do, and that is
using a callback, for example as a collision handler or a position function:

def f(b,dt):
 b.position += (1,0)

s.step(0.01)

(see pymunk-callback.py)

Results:

Tests run on a HP G1 1040 laptop with a Intel i7-4600U. Laptop runs Windows,
and the tests were run inside a VirtualBox VM running 64bit Debian. The CPython
tests uses CPython from Conda, while the Pypy tests used a
manually downloaded Pypy. CPython 2.7 is using Cffi 1.7, the other tests
Cffi 1.8.

Remember that these results doesn’t tell you how you game/application will
perform, they can more be seen as a help to identify performance issues and
know differences between Pythons.

Pymunk-Get:

	
	CPython 2.7.12

	CPython 3.5.2

	Pypy 5.4.1

	Pymunk 5.1

	2.1s

	2.2s

	0.36s

	Pymunk 5.0

	4.3s

	4.5s

	0.37s

	Pymunk 4.0

	1.0s

	0.9s

	0.52s

Pymunk-Callback:

	
	CPython 2.7.12

	CPython 3.5.2

	Pypy 5.4.1

	Pymunk 5.1

	5.7s

	6.8s

	1.1s

	Pymunk 5.0

	6.5s

	7.3s

	1.0s

	Pymunk 4.0

	5.1s

	6.5s

	4.5s

What we can see from these results is that you should use Pypy if you have the
possibility since that is much faster than regular CPython. We can also see
that moving from Ctypes to Cffi between Pymunk 4 and 5 had a negative impact in
CPython, but positive impact on Pypy, and Pymunk 5 together with Pypy is with a
big margin the fastest option.

The speed increase between 5.0 and 5.1 happened because the Vec2d class and how
its handled internally in Easymunk was changed to improve performance.

Compared to Other Physics Libraries

Cymunk

Cymunk [https://github.com/kivy/cymunk] is an alternative wrapper around Chipmunk. In contrast to Pymunk it uses Cython for wrapping (Pymunk uses CFFI)
which gives it a different performance profile. However, since both are built
around Chipmunk the overall speed will be very similar, only when information
passes from/to Chipmunk will there be a difference. This is exactly the kind of
overhead that the micro benchmarks are made to measure.

Cymunk is not as feature complete as Easymunk, so in order to compare with Easymunk
we have to make some adjustments. A major difference is that it does not
implement the position_func function, so instead we do an alternative
callback test using the collision handler:

h = s.add_default_collision_handler()
def f(arb):
 return false
h.pre_solve = f

s.step(0.01)

(see pymunk-collision-callback.py and cymunk-collision-callback.py)

Results

Tests run on a HP G1 1040 laptop with a Intel i7-4600U. Laptop runs Windows,
and the tests were run inside a VirtualBox VM running 64bit Debian. The CPython
tests uses CPython from Conda, while the Pypy tests used a manually downloaded
Pypy. Cffi version 1.10.0 and Cython 0.25.2.

Since Cymunk doesnt have a proper release I used the latest master from its
Github repository, hash 24845cc retrieved on 2017-09-16.

Get:

	
	CPython 3.5.3

	Pypy 5.8

	Pymunk 5.3

	2.14s

	0.33s

	Cymunk 20170916

	0.41s

	(10.0s)

Collision-Callback:

	
	CPython 3.5.3

	Pypy 5.8

	Pymunk 5.3

	3.71s

	0.58s

	Pymunk 20170916

	0.95s

	(7.01s)

(Cymunk results on Pypy within parentheses since Cython is well known to be
slow on Pypy)

What we can see from these results is that Cymunk on CPython is much faster
than Easymunk on CPython, but Pymunk takes the overall victory when we include
Pypy.

Something we did not take into account is that you can trade convenience for
performance and use Cython in the application code as well to speed things up. I
think this is the approach used in KivEnt which is the primary user of Cymunk.
However, that requires a much more complicated setup when you develop your
application because of the compiler requirements and code changes.

 Advanced

Advanced

In this section different “Advanced” topics are covered, things you normally
dont need to worry about when you use Easymunk but might be of interest if you
want a better understanding of Easymunk for example to extend it.

First off, Easymunk is a pythonic wrapper around the C-library Chipmunk.

To wrap Chipmunk Easymunk uses CFFI in API mode. On top of the CFFI wrapping is
a handmade pythonic layer to make it nice to use from Python code.

Why CFFI?

This is a straight copy from the github issue tracking the CFFI upgrade.
https://github.com/viblo/pymunk/issues/99

CFFI have a number of advantages but also a downsides.

Advantages (compared to ctypes):

	Its an active project. The developers and users are active, there are new
releases being made and its possible to ask and get answers within a day on
the CFFI mailing list.

	Its said to be the way forward for Pypy, with promise of better performance
compares to ctypes.

	A little easier than ctypes to wrap things since you can just copy-paste the
c headers.

Disadvatages (compared to ctypes):

	ctypes is part of the CPython standard library, CFFI is not. That means that
it will be more difficult to install Easymunk if it uses CFFI, since a
copy-paste install is no longer possible in an easy way.

For me I see the 1st advantage as the main point. I have had great difficulties
with strange segfaults with 64bit pythons on windows, and also sometimes on
32bit python, and support for 64bit python on both windows and linux is
something I really want. Hopefully those problems will be easier to handle with
CFFI since it has an active community.

Then comes the 3rd advantage, that its a bit easier to wrap the c code. For
ctypes I have a automatic wrapping script that does most of the low level
wrapping, but its not supported, very difficult to set up (I only managed
inside a VM with linux) and quite annoying. CFFI would be a clear improvement.

For the disadvantage of ctypes I think it will be acceptable, even if not
ideal. Many python packages have to be installed in some way (like pygame),
and nowadays with pip its very easy to do. So I hope that it will be ok.

Code Layout

Most of Easymunk should be quite straight forward.

Except for the documented API Easymunk has a couple of interesting parts. Low
level bindings to Chipmunk, a custom documentation generation extension and a
customized setup.py file to allow compilation of Chipmunk.

The low level chipmunk bindings are located in the file
extension_build.py.

	docs/src/ext/autoexample.py
	A Sphinx extension that scans a directory and extracts the toplevel
docstring. Used to autogenerate the examples documentation.

	easymunk/_chipmunk_cffi.py
	This file only contains a call to _chipmunk_cffi_abi.py, and exists mostly
as a wrapper to be able to switch between abi and api mode of Cffi. This
is currently not in use in the relased code, but is used during
experimentation.

	easymunk/_chipmkunk_cffi_abi.py
	This file contains the pure Cffi wrapping definitons. Bascially a giant
string created by copy-paster from the relevant header files of Chipmunk.

	setup.py
	Except for the standard setup stuff this file also contain the custom
build commands to build Chipmunk from source, using a build_ext extension.

	easymunk/tests/*
	Collection of (unit) tests. Does not cover all cases, but most core
things are there. The tests require a working chipmunk library file.

	tools/*
	Collection of helper scripts that can be used to various development tasks
such as generating documentation.

Tests

There are a number of unit tests included in the easymunk.tests package
(easymunk/tests). Not exactly all the code is tested, but most of it (at the time
of writing its about 85% of the core parts).

The tests can be run by calling the module

> python -m pymunk.tests

Its possible to control which tests to run, by specifying a filtering
argument. The matching is as broad as possible, so Test matches all the
unit tests, test_arbiter all tests in test_arbiter.py and
testResetitution matches the exact testRestitution test case

> python -m pymunk.tests -f testRestitution

To see all options to the tests command use -h

> python -m pymunk.tests -h

Since the tests cover even the optional parts, you either have to make sure
all the optional dependencies are installed, or filter out those tests.

Working with non-wrapped parts of Chipmunk

In case you need to use something that exist in Chipmunk but currently is not
included in easymunk the easiest method is to add it manually.

For example, lets assume that the is_sleeping property of a body was not
wrapped by easymunk. The Chipmunk method to get this property is named
cpBodyIsSleeping.

First we need to check if its included in the cdef definition in
extension_build.py. If its not just add it.

cpBool cpBodyIsSleeping(const cpBody *body);

Then to make it easy to use we want to create a python method that looks nice:

def is_sleeping(body):
 return cp.cpBodyIsSleeping(body._body)

Now we are ready with the mapping and ready to use our new method.

Weak References and free Methods

Internally Easymunk allocates structs from Chipmunk (the c library). For example a
Body struct is created from inside the constructor method when a easymunk.Body is
created. Because of this its important that the corresponding c side memory is
deallocated properly when not needed anymore, usually when the Python side
object is garbage collected. Most Easymunk objects use ffi.gc with a custom
free function to do this. Note that the order of freeing is very important to
avoid errors.

 Changelog

Changelog

Easymunk 0.9.0 (2021-03-01)

Forked from easymunk 6.0.0

This is the first release of Easymunk.

Highlights - Major changes relative to Pymunk:

	Default to using angles rather than radians.

	Avoid using space.add/remove methods by adding factory functions in space.

	Create the Junction object to control multiple constraints between two objects.

 License

License

 Python Module Index

 Python Module Index

 c |
 e |
 g |
 l |
 m |
 p

 		 	

 		
 c	

 	
 	
 easymunk.core	

 		 	

 		
 e	

 	
 	
 easymunk	

 		 	

 		
 g	

 	
 	
 easymunk.geometry	

 		 	

 		
 l	

 	
 	
 easymunk.linalg	

 		 	

 		
 m	

 	
 	
 easymunk.matplotlib	

 		 	

 		
 p	

 	
 	
 easymunk.pygame	

 	
 	
 easymunk.pyglet	

 	
 	
 easymunk.pyxel	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | M
 | S
 | T

_

 	
 	__init__() (easymunk.matplotlib.DrawOptions method)

A

 	
 	ax() (easymunk.matplotlib.DrawOptions property)

C

 	
 	chipmunk_version (in module easymunk)

 	collision_point_color() (easymunk.matplotlib.DrawOptions property)

 	(easymunk.pygame.DrawOptions property)

 	(easymunk.pyglet.DrawOptions property)

 	color_for_shape() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	
 	constraint_color() (easymunk.matplotlib.DrawOptions property)

 	(easymunk.pygame.DrawOptions property)

 	(easymunk.pyglet.DrawOptions property)

D

 	
 	draw_bb() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_circle() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_circle_shape() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	DRAW_COLLISION_POINTS (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	DRAW_CONSTRAINTS (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	draw_dot() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_fat_segment() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_object() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	
 	draw_poly_shape() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_polygon() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_segment() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_segment_shape() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	draw_shape() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	DRAW_SHAPES (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	draw_vec2d() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	DrawOptions (class in easymunk.matplotlib)

 	(class in easymunk.pygame)

 	(class in easymunk.pyglet)

E

 	
 	
 easymunk

 	module

 	
 easymunk.core

 	module

 	
 easymunk.geometry

 	module

 	
 easymunk.linalg

 	module

 	
 	
 easymunk.matplotlib

 	module

 	
 easymunk.pygame

 	module

 	
 easymunk.pyglet

 	module

 	
 easymunk.pyxel

 	module

F

 	
 	finalize_frame() (easymunk.matplotlib.DrawOptions method)

 	(easymunk.pygame.DrawOptions method)

 	(easymunk.pyglet.DrawOptions method)

 	
 	flags() (easymunk.matplotlib.DrawOptions property)

 	(easymunk.pygame.DrawOptions property)

 	(easymunk.pyglet.DrawOptions property)

 	from_pygame() (easymunk.pygame.DrawOptions method)

M

 	
 	
 module

 	easymunk

 	easymunk.core

 	easymunk.geometry

 	easymunk.linalg

 	easymunk.matplotlib

 	easymunk.pygame

 	easymunk.pyglet

 	easymunk.pyxel

 	
 	mouse_pos() (easymunk.pygame.DrawOptions method)

S

 	
 	shape_dynamic_color (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	shape_kinematic_color (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	shape_outline_color() (easymunk.matplotlib.DrawOptions property)

 	(easymunk.pygame.DrawOptions property)

 	(easymunk.pyglet.DrawOptions property)

 	
 	shape_sleeping_color (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	shape_static_color (easymunk.matplotlib.DrawOptions attribute)

 	(easymunk.pygame.DrawOptions attribute)

 	(easymunk.pyglet.DrawOptions attribute)

 	surface (easymunk.pygame.DrawOptions attribute)

T

 	
 	to_pygame() (easymunk.pygame.DrawOptions method)

_static/examples/breakout.png
fps: 60.6060600281

Move with leftiight arrows, space to spawn a ball
Press R to reset. ESC or G to quit

_static/examples/constraints.png
& fos: 588235282008

oo

-0 0:0

\ 7

GroovedJoint is similar to a PivotJoint, but with a linear slide.

One of the anchor points is aline segment that the pivot can slid

Pymunk constraints demo. Use mouse to drag/drop. Hover to see descr.

instead of being fixed.

_static/examples/box2d_pyramid.png

_static/examples/box2d_vertical_stack.png
113.48

_static/examples/contact_and_no_flipy.png
500

_static/examples/contact_with_friction.png

_static/examples/balls_and_lines.png
Q
€]

_static/examples/bouncing_balls.png

_static/virtuaplant.png
Bottle-Filling Factory - World View

VirtuaPlant
Bottle-filling factory

_static/examples/arrows.png
fps: 61.7283935547

/

Aim with mouse, hold LMB to powerup, release to fire
Press ESC or Q to quit

_images/My_Sincerest_Apologies.png
00 [
}

&
]

nav.xhtml

 Table of Contents

 		
 Easymunk

 		
 Installation

 		
 Install Easymunk

 		
 Examples & Documentation

 		
 Troubleshooting

 		
 Advanced - Android Install

 		
 Kivy

 		
 Termux

 		
 Advanced - Install

 		
 Advanced - Running without installation

 		
 Compile Chipmunk

 		
 CFFI Installation

 		
 Overview

 		
 Basics

 		
 Model your physics objects

 		
 Object shape

 		
 Mass, weight and units

 		
 Looks before realism

 		
 Game loop / moving time forward

 		
 Object tunneling

 		
 Unstable simulation?

 		
 Performance

 		
 Copy and Load/Save Easymunk objects

 		
 Additional info

 		
 API Reference

 		
 easymunk Package

 		
 easymunk.geometry Module

 		
 easymunk.core Module

 		
 easymunk.linalg Module

 		
 easymunk.matplotlib Module

 		
 easymunk.pygame Module

 		
 easymunk.pyglet Module

 		
 easymunk.pyxel Module

 		
 Examples

 		
 Jupyter Notebooks

 		
 matplotlib_util_demo.ipynb

 		
 newtons_cradle.ipynb

 		
 Standalone Python

 		
 arrows.py

 		
 balls_and_lines.py

 		
 basic_test.py

 		
 bouncing_balls.py

 		
 box2d_pyramid.py

 		
 box2d_vertical_stack.py

 		
 breakout.py

 		
 constraints.py

 		
 contact_and_no_flipy.py

 		
 contact_with_friction.py

 		
 copy_and_pickle.py

 		
 damped_rotary_spring_pointer.py

 		
 deformable.py

 		
 flipper.py

 		
 index_video.py

 		
 kivy_pymunk_demo

 		
 logo.py

 		
 newtons_cradle.py

 		
 platformer.py

 		
 playground.py

 		
 point_query.py

 		
 py2exe_setup__basic_test.py

 		
 py2exe_setup__breakout.py

 		
 pygame_demo.py

 		
 pyglet_demo.py

 		
 shapes_for_draw_demos.py

 		
 slide_and_pinjoint.py

 		
 spiderweb.py

 		
 tangram.py

 		
 tank.py

 		
 using_sprites.py

 		
 using_sprites_pyglet.py

 		
 Showcase

 		
 Games

 		
 Non-Games

 		
 Papers / Science

 		
 Cite Pymunk

 		
 Tutorials

 		
 Slide and Pin Joint Demo Step by Step

 		
 Before we start

 		
 An empty simulation

 		
 Falling balls

 		
 A static L

 		
 Joints (1)

 		
 Joints (2)

 		
 Ending

 		
 External Tutorials

 		
 Benchmarks

 		
 Micro benchmarks

 		
 Results:

 		
 Compared to Other Physics Libraries

 		
 Cymunk

 		
 Advanced

 		
 Why CFFI?

 		
 Code Layout

 		
 Tests

 		
 Working with non-wrapped parts of Chipmunk

 		
 Weak References and free Methods

 		
 Changelog

 		
 Easymunk 0.9.0 (2021-03-01)

 		
 License

_images/aimoveneat.png
Thereiyou go!

Generation : 49

_images/PySimpleGUI.png
s Rzl

 Dop

libre

i Snut

B lamr

e

oSruwuase

® Tutorials@
Benchmarks

Advanced o
ue Tracker
gurce Repository
¢ QPwnloads

License @
[N J

This Page
Show Source '

Quick search

. [] Go
[®
Troubleshoot your Python
app performance to identify
. bottlenecks. Try Datadog
APM free today.
®

Sponsored - Ads served etﬁally

([]
H 2 lype here to sesrch
P

C @ . P © & www.pymunk.org/en/latest/iflex html

Pymunk is a easy-to-use python'g 2’ physics library that can be used whe
need 2d rigid body physi‘ from Python. Perfect when you ndd 2d phy"
game, demo or other application! It is built on top of the Vilry capable 2d pl
Chipmunk. ® |

The ﬁrst’ersion \‘ reled’ed in 2007 and Pymunk iitill actively develor
tained today, more M 10 years of active developmerit! .

Pymunk has been used wjgla success in many projects, big and small. For
Pyweek game competition winnergy fbre than a dozen published scientifi
even in a self-driving car simulation®See the Showcases section on the P
page for some examples.

2004 - 2020, Vict

® ‘ < | |Front
This release is based e

aef346fb8b (source included).

Back | | More Balls | | Transparent | Resume

o . ®
Installation °
o
In the normal c#e pymunk can be inglbd with pip:
*
eppip install .|unk o ® (
Y L

It has one direct dependency, CFFI. o Py ®

_images/SubTerrex.png

_images/arcade-library.png
Processing time: 0.001
Drawing time: 0.005

_images/arrows.png
fps: 61.7283935547

/

Aim with mouse, hold LMB to powerup, release to fire
Press ESC or Q to quit

_images/ambient-chimes.png

_images/angry-birds-python.png
E)

_images/balls_and_lines.png
Q
€]

_images/beneath-the-ice.png

_images/billiARds.png

_images/box2d_vertical_stack.png
113.48

_images/breakout.png
fps: 60.6060600281

Move with leftiight arrows, space to spawn a ball
Press R to reset. ESC or G to quit

_images/bouncing_balls.png

_images/box2d_pyramid.png

_images/constraints.png
& fos: 588235282008

oo

-0 0:0

\ 7

GroovedJoint is similar to a PivotJoint, but with a linear slide.

One of the anchor points is aline segment that the pivot can slid

Pymunk constraints demo. Use mouse to drag/drop. Hover to see descr.

instead of being fixed.

_images/contact_and_no_flipy.png
500

_images/carconf.png

_images/carrom-rl.png
Time Elapsed: 100.1

Player 1 Score: 4

_images/copy_and_pickle.png
fps: 60.2409629822

space sleep_time_threshold set to 05 seconds space sleep_time_threshold set to inf (disabled)

Press SPACE to ﬁ‘\ve an impulse to the ball,
Press S to save the curent state to file, press L to load it
Press R to reset, ESC or Q to quit

_images/damped_rotary_spring_pointer.png

_images/contact_with_friction.png

_images/index_video.png

_images/invisipin.png
imviSi=in

_images/deformable.png
LMB(hold): Draw pink color
Lighola) e Creiebane
Fioaer e 50 b N

_images/flipper.png

_images/matplotlib_util_demo.png
700

0

E

00

00

£

100

Static Shapes Kinematic Shapes Dynamic Shapes

—~ee _~ee _~ee

“ “ ‘ ‘ slide Joint

et e
.
——

. . . ‘ Ratchet joint

Sleeping Custom Color (static & dynamic) Collisions .

Pin Joints Groove Joint.

Damped Spring

17.'&
3

Damped Rotary Spring

Eg £ @0 EQ

000

_images/kivy_pymunk_demo.png
v B

&

_images/legged_robot.png
Stuck: - Roam: - Dir: RIGHT, SeglLen: 1/1 Gen: 2/5 SeqRep: 2/3 Seq: 1/1 Fittest: 3| 0 Fit: 295.45 | 343.56

ST T LI

_images/playground.png
convex hull of the points)

:

_images/point_query.png

_images/newtons_cradle.png
Ips: 50.0

Press left mouse button and drag o interact
Press R 1o reset, any other key o quit

_images/platformer.png
fps: 60.6060600281

Move with Left/Right, jump vith Up, press again to double jumy
Brose ESCorQ to qu i Up. press ag Jump

_images/slide_and_pinjoint.png

_images/slide_and_pinjoint1.png
| @

_images/pyphysicssandbox.png
& Atiny volcano

_images/reinforcement-learning-car.png

_images/spiderweb.png

_static/examples/point_query.png

_images/tank.png
Use the mouse to drive the tank, it will follow the

g

r.

T

_static/examples/pyglet_util_demo.png
Static Shapes Kinematic Shapes Dynarmic Shapes
Pm Joint Groove Joint

e _~e0 %o ®

‘ ‘ ‘ s Darmped Sprng
A A A Pivot Joint

.i.

‘ Damped Rotary Spring

Rotary Limit Joint

‘ Ratchet Joint

Sleeping Custom Color (static, inematic & dynamic) Collisions

Dermno example of shapes drawn by pyglet_util draw()

_static/examples/pygame_util_demo.png
Static Shapes Kinematic Shapes Dynammsnapes

~ee _~ee

| | ‘ | | ‘ | | ‘ SMEJNM -

Pm Joint Groove Joint

e®

Damped Rotary Spring

.
. I ' Rotary Limit Joint
l Ratchet Joint

Sleeping Custom Color (static, kinematic & dynamic) Collsions .

Demo example of pygame_util DrawOptions(). Use Arrows and A/Z to pan and zoom

Pivot Joint

_static/examples/spiderweb.png

_static/examples/slide_and_pinjoint.png

_static/examples/kivy_pymunk_demo.png
v B

&

_static/examples/index_video.png

_static/examples/newtons_cradle.png
Ips: 50.0

Press left mouse button and drag o interact
Press R 1o reset, any other key o quit

_static/examples/matplotlib_util_demo.png
700

0

E

00

00

£

100

Static Shapes Kinematic Shapes Dynamic Shapes

—~ee _~ee _~ee

“ “ ‘ ‘ slide Joint

et e
.
——

. . . ‘ Ratchet joint

Sleeping Custom Color (static & dynamic) Collisions .

Pin Joints Groove Joint.

Damped Spring

17.'&
3

Damped Rotary Spring

Eg £ @0 EQ

000

_static/examples/playground.png
convex hull of the points)

:

_static/examples/platformer.png
fps: 60.6060600281

Move with Left/Right, jump vith Up, press again to double jumy
Brose ESCorQ to qu i Up. press ag Jump

_static/My_Sincerest_Apologies.png
00 [
}

&
]

_static/PySimpleGUI.png
s Rzl

 Dop

libre

i Snut

B lamr

e

oSruwuase

® Tutorials@
Benchmarks

Advanced o
ue Tracker
gurce Repository
¢ QPwnloads

License @
[N J

This Page
Show Source '

Quick search

. [] Go
[®
Troubleshoot your Python
app performance to identify
