
easymunk Documentation
Release 0.9.1

Fábio Mendes

Apr 04, 2021

CONTENTS

1 Installation 3

2 Example 5

3 Documentation 7

4 The Easymunk Vision 9

5 Contact & Support 11

6 Dependencies / Requirements 13

7 Install from source / Chipmunk Compilation 15

8 Contents 17
8.1 Installation . 17

8.1.1 Install Easymunk . 17
8.1.2 Examples & Documentation . 17
8.1.3 Troubleshooting . 18
8.1.4 Advanced - Android Install . 18

8.1.4.1 Kivy . 18
8.1.4.2 Termux . 18

8.1.5 Advanced - Install . 18
8.1.5.1 Advanced - Running without installation . 19

8.1.6 Compile Chipmunk . 19
8.1.7 CFFI Installation . 20

8.2 Overview . 20
8.2.1 Basics . 20
8.2.2 Model your physics objects . 20

8.2.2.1 Object shape . 20
8.2.2.2 Mass, weight and units . 21
8.2.2.3 Looks before realism . 21

8.2.3 Game loop / moving time forward . 21
8.2.4 Object tunneling . 22
8.2.5 Unstable simulation? . 22
8.2.6 Performance . 23
8.2.7 Copy and Load/Save Easymunk objects . 23
8.2.8 Additional info . 23

8.3 API Reference . 23
8.3.1 easymunk Package . 23

8.3.1.1 easymunk.geometry Module . 24

i

8.3.1.2 easymunk.core Module . 24
8.3.1.3 easymunk.linalg Module . 24
8.3.1.4 easymunk.matplotlib Module . 24
8.3.1.5 easymunk.pygame Module . 26
8.3.1.6 easymunk.pyglet Module . 28
8.3.1.7 easymunk.pyxel Module . 30

8.4 Examples . 31
8.4.1 Jupyter Notebooks . 31

8.4.1.1 matplotlib_util_demo.ipynb . 31
8.4.1.2 newtons_cradle.ipynb . 32

8.4.2 Standalone Python . 32
8.4.2.1 arrows.py . 34
8.4.2.2 balls_and_lines.py . 35
8.4.2.3 basic_test.py . 36
8.4.2.4 bouncing_balls.py . 36
8.4.2.5 box2d_pyramid.py . 37
8.4.2.6 box2d_vertical_stack.py . 38
8.4.2.7 breakout.py . 38
8.4.2.8 constraints.py . 39
8.4.2.9 contact_and_no_flipy.py . 40
8.4.2.10 contact_with_friction.py . 41
8.4.2.11 copy_and_pickle.py . 42
8.4.2.12 damped_rotary_spring_pointer.py . 43
8.4.2.13 deformable.py . 44
8.4.2.14 flipper.py . 45
8.4.2.15 index_video.py . 46
8.4.2.16 kivy_pymunk_demo . 47
8.4.2.17 logo.py . 48
8.4.2.18 newtons_cradle.py . 48
8.4.2.19 platformer.py . 49
8.4.2.20 playground.py . 49
8.4.2.21 point_query.py . 50
8.4.2.22 py2exe_setup__basic_test.py . 51
8.4.2.23 py2exe_setup__breakout.py . 52
8.4.2.24 pygame_demo.py . 52
8.4.2.25 pyglet_demo.py . 52
8.4.2.26 shapes_for_draw_demos.py . 52
8.4.2.27 slide_and_pinjoint.py . 52
8.4.2.28 spiderweb.py . 53
8.4.2.29 tangram.py . 54
8.4.2.30 tank.py . 54
8.4.2.31 using_sprites.py . 55
8.4.2.32 using_sprites_pyglet.py . 56

8.5 Showcase . 57
8.5.1 Games . 59
8.5.2 Non-Games . 61
8.5.3 Papers / Science . 62

8.5.3.1 Cite Pymunk . 64
8.6 Tutorials . 64

8.6.1 Slide and Pin Joint Demo Step by Step . 64
8.6.1.1 Before we start . 65
8.6.1.2 An empty simulation . 66
8.6.1.3 Falling balls . 67
8.6.1.4 A static L . 69

ii

8.6.1.5 Joints (1) . 71
8.6.1.6 Joints (2) . 71
8.6.1.7 Ending . 72

8.6.2 External Tutorials . 74
8.7 Benchmarks . 74

8.7.1 Micro benchmarks . 75
8.7.1.1 Results: . 75

8.7.2 Compared to Other Physics Libraries . 76
8.7.2.1 Cymunk . 76

8.8 Advanced . 77
8.8.1 Why CFFI? . 77
8.8.2 Code Layout . 78
8.8.3 Tests . 78
8.8.4 Working with non-wrapped parts of Chipmunk . 79
8.8.5 Weak References and free Methods . 79

8.9 Changelog . 79
8.9.1 Easymunk 0.9.0 (2021-03-01) . 79

8.10 License . 79

9 Indices and tables 81

Python Module Index 83

Index 85

iii

iv

easymunk Documentation, Release 0.9.1

Easymunk is a easy-to-use pythonic 2d physics library that can be used whenever you need 2d rigid body physics from
Python. Perfect when you need 2d physics in your game, demo or other application! It is built on top of the very
capable 2d physics library Chipmunk.

Easymunk is a fork of the excellent pymunk project, but it allows itself to deviate more from the original C-library
API. The goal is to explore a more Pythonic interface and tends to be easier to use and require less code to acomplish
the same effects.

The first version was released in 2021, based on Pymunk 6.0. It owns greatly from Pymunk’s maturity and 10 years
of active development. Easymunk is a laboratory and we hope to give back code to Pymunk upstream and collaborate
with its development.

Pymunk: 2007 - 2020, Victor Blomqvist - vb@viblo.se, MIT License Easymunk: 2021, Fábio Macêdo Mendes -
fabiomacedomendese@gmail.com, MIT License

CONTENTS 1

http://chipmunk-physics.net
mailto:vb@viblo.se
mailto:fabiomacedomendese@gmail.com

easymunk Documentation, Release 0.9.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

In the normal case Easymunk can be installed from PyPI with pip:

> pip install easymunk-physics

It has a few dependencies that are installed automatically.

3

easymunk Documentation, Release 0.9.1

4 Chapter 1. Installation

CHAPTER

TWO

EXAMPLE

Quick code example:

import easymunk as mk # Import easymunk.

space = mk.Space(# Create a Space which contain the simulation
gravity=(0, -10), # setting its gravity

)

body = space.create_box(# Create a Body with mass, moment,
shape=(10, 20), # position and shape.
mass=10,
moment=150,
position=(50,100),

)

while True: # Infinite loop simulation
space.step(0.01) # Step the simulation one step forward
space.debug_draw() # Print the state of the simulation

For more detailed and advanced examples, take a look at the included demos (in examples/).

Examples are not included if you install with pip install easymunk. Instead you need to download the source archive
(easymunk-x.y.z.zip). Download available from https://pypi.org/project/easymunk/#files

5

https://pypi.org/project/easymunk/#files

easymunk Documentation, Release 0.9.1

6 Chapter 2. Example

CHAPTER

THREE

DOCUMENTATION

The source distribution of Easymunk ships with a number of demos of different simulations in the examples directory,
and it also contains the full documentation including API reference.

You can also find the full documentation including examples and API reference on the Easymunk homepage, http:
//fabiommendes.github.io/easymunk.

7

http://fabiommendes.github.io/easymunk
http://fabiommendes.github.io/easymunk

easymunk Documentation, Release 0.9.1

8 Chapter 3. Documentation

CHAPTER

FOUR

THE EASYMUNK VISION

“Make 2d physics easy to include in your game”

It is (or is striving to be):

• Easy to use - It should be easy to use, no complicated code should be needed to add physics to your game or
program.

• “Pythonic” - It should not be visible that a c-library (Chipmunk) is in the bottom, it should feel like a Python
library (no strange naming, no memory handling and more)

• Simple to build & install - You shouldn’t need to have a zillion of libraries installed to make it install, or do a
lot of command line tricks.

• Multi-platform - Should work on both Windows, *nix and OSX.

• Non-intrusive - It should not put restrictions on how you structure your program and not force you to use a
special game loop, it should be possible to use with other libraries like Pygame and Pyglet.

9

easymunk Documentation, Release 0.9.1

10 Chapter 4. The Easymunk Vision

CHAPTER

FIVE

CONTACT & SUPPORT

Homepage http://fabiommendes.github.io/easymunk

Stackoverflow You can ask questions/browse old ones at Stackoverflow, just look for the Easymunk tag. http://
stackoverflow.com/questions/tagged/easymunk

Issue Tracker Please use the issue tracker at github to report any issues you find: https://github.com/fabiommendes/
easymunk/issues

Regardless of the method you use I will try to answer your questions as soon as I see them. (And if you ask on SO
other people might help as well!)

11

http://fabiommendes.github.io/easymunk
http://stackoverflow.com/questions/tagged/easymunk
http://stackoverflow.com/questions/tagged/easymunk
https://github.com/fabiommendes/easymunk/issues
https://github.com/fabiommendes/easymunk/issues

easymunk Documentation, Release 0.9.1

12 Chapter 5. Contact & Support

CHAPTER

SIX

DEPENDENCIES / REQUIREMENTS

Basically Easymunk have been made to be as easy to install and distribute as possible, usually pip install easymunk-
physics will take care of everything for you.

• Python (Runs on CPython 3.8 and later)

• Chipmunk (Compiled library already included on common platforms)

• CFFI (will be installed automatically by Pip)

• Setuptools (should be included with Pip)

• GCC and friends (optional, you need it to compile Easymunk from source. On windows Visual Studio is required
to compile)

• Pygame (optional, you need it to run the Pygame based demos)

• Pyglet (optional, you need it to run the Pyglet based demos)

• Pyxel (optional, you need it to run the Pyxel based demos)

• Streamlit (optional, you need it to run the streamlit based demos)

• Matplotlib & Jupyter Notebook (optional, you need it to run the Matplotlib based demos)

• Sphinx & aafigure & sphinx_autodoc_typehints (optional, you need it to build documentation)

13

easymunk Documentation, Release 0.9.1

14 Chapter 6. Dependencies / Requirements

CHAPTER

SEVEN

INSTALL FROM SOURCE / CHIPMUNK COMPILATION

This section is only required in case you do not install easymunk from the prebuild binary wheels (normally if you do
not use pip install or you are on a uncommon platform).

Easymunk is built on top of the c library Chipmunk. It uses CFFI to interface with the Chipmunk library file. Because
of this Chipmunk has to be compiled together with Easymunk as an extension module.

There are basically two options, either building it automatically as part of installation using for example Pip:

> pip install easymunk-source-dist.zip

And Pip even accepts URL arguments, which can be used to fetch directly a commit or the latest version in main:

> pip install https://github.com/fabiommendes/easymunk/archive/refs/heads/main.zip

If you want to contribute to this project or simply want to study Easymunk’s code, it is recommended to clone the git
repository and build from there:

> git clone http://github.com/fabiommendes/easymunk

After cloning, initialize the repository with git submodules:

> cd easymunk
> git submodule update --init --recursive

This will download the Chipmunk2D source tree, which is necessary to compile the C-extension module used by
easymunk. Now that the source code is available, build the extension module with:

> python setup.py build_ext

Finally, install it with:

> python setup.py develop --user

Easymunk requires Python 3.8+.

15

easymunk Documentation, Release 0.9.1

16 Chapter 7. Install from source / Chipmunk Compilation

CHAPTER

EIGHT

CONTENTS

8.1 Installation

Tip: You will find the latest released version at pypi: https://pypi.python.org/pypi/pymunk

8.1.1 Install Easymunk

Easymunk can be installed with pip install:

> pip install easymunk

Easymunk can also be installed with conda install, from the conda-forge channel:

> conda install -c conda-forge easymunk

Sometimes on more uncommon platforms you will need to have a GCC-compatible c-compiler installed.

On OSX you can install one with:

> xcode-select --install

On Linux you can install one with the package manager, for example on Ubuntu with:

> sudo apt-get install build-essential

8.1.2 Examples & Documentation

Because of their size the examples and the documentation are available in the source distribution of Easymunk, but
not the wheels. The source distribution is available from PyPI at https://pypi.org/project/easymunk/#files (Named
easymunk-x.y.z.zip)

17

https://pypi.python.org/pypi/pymunk
https://pypi.org/project/easymunk/#files

easymunk Documentation, Release 0.9.1

8.1.3 Troubleshooting

Check that no files are named easymunk.py

Check that conda install works https://stackoverflow.com/questions/39811929/
package-installed-by-conda-python-cannot-find-it

8.1.4 Advanced - Android Install

Easymunk can run on Android phones/tablets/computers.

8.1.4.1 Kivy

Kivy is a open source Python library for rapid development of applications that make use of innovative user interfaces,
such as multi-touch apps, and can run on Android (and a number of other platforms such as Linux, Windows, OS X,
iOS and Raspberry Pi).

Easymunk should work out of the box when used with Kivy. Note however that the recipe used to build Easymunk
specifies a specific version of Easymunk that might not be the latest, see the recipe script here: https://github.com/
kivy/python-for-android/blob/master/pythonforandroid/recipes/pymunk/__init__.py

8.1.4.2 Termux

Termux is an Android terminal emulator and Linux environment app that works directly with no rooting or setup
required.

There are no binary wheels of pymunk for Termux/Android, or for its dependency cffi, so you will need to install a
couple of packages first, before pymunk can be installed.

1. Install python and other needed dependencies (run inside Termux):

$ pkg install python python-dev clang libffi-dev

2. Install pymunk with pip:

$ pip install pymunk

3. Verify that it works:

$ python -m pymunk.tests test

8.1.5 Advanced - Install

Another option is to use the standard setup.py way, in case you have downloaded the source distribution:

> python setup.py install

Note that this require a GCC compiler, which can be a bit tricky on Windows. If you are on Mac OS X or Linux you
will probably need to run as a privileged user; for example using sudo:

> sudo python setup.py install

Once installed you should be able to to import pymunk just as any other installed library. pymunk should also work
just fine with virtualenv in case you want it installed in a contained environment.

18 Chapter 8. Contents

https://stackoverflow.com/questions/39811929/package-installed-by-conda-python-cannot-find-it
https://stackoverflow.com/questions/39811929/package-installed-by-conda-python-cannot-find-it
https://kivy.org
https://github.com/kivy/python-for-android/blob/master/pythonforandroid/recipes/pymunk/__init__.py
https://github.com/kivy/python-for-android/blob/master/pythonforandroid/recipes/pymunk/__init__.py
https://termux.com/

easymunk Documentation, Release 0.9.1

8.1.5.1 Advanced - Running without installation

If you do not want to install Easymunk, for example because you want to bundle it with your code, its also possible
to run it directly inplace. Given that you have the source code the first thing to do is to compile chipmunk with the
inplace option, as described in the Compile Chipmunk section.

To actually import pymunk from its folder you need to do a small path hack, since the pymunk root folder (where
setup.py and the README are located) is not part of the package. Instead you should add the path to the pymunk
package folder (where files such as space.py and body.py are located):

mycodefolder/
|-- mycode.py
|-- ...
|-- easymunk/
| |-- README.rst
| |-- setup.py
| |-- easymunk/
| | |-- space.py
| | |-- body.py
| | |-- ...
| |-- ...

Then inside you code file (mycode.py) import sys and add the pymunk folder to the path:

import sys
sys.path.insert(1, 'easymunk')
import easymunk as mk

8.1.6 Compile Chipmunk

If a compiled binary library of Chipmunk that works on your platform is not included in the release you will need to
compile Chipmunk yourself. Another reason to compile chipmunk is if you want to run it in release mode to get rid of
the debug prints it generates. If you just use pip install the compilation will happen automatically given that a compiler
is available. You can also specifically compile Chipmunk as described below.

To compile Chipmunk:

> python setup.py build_ext

If you got the source and just want to use it directly you probably want to compile Chipmunk in-place, that way the
output is put directly into the correct place in the source folder:

> python setup.py build_ext --inplace

On Windows you will need to use Visual Studio matching your Python version.

8.1. Installation 19

easymunk Documentation, Release 0.9.1

8.1.7 CFFI Installation

Sometimes you need to manually install the (non-python) dependencies of CFFI. Usually you will notice this as a
installation failure when pip tries to install CFFI since CFFI is a dependency of Easymunk. This is not really part of
Easymunk, but a brief description is available for your convenience.

You need to install two extra dependencies for CFFI to install properly. This can be handled by the package manager.
The dependencies are python-dev and libffi-dev. Note that they might have slightly different names depending on the
distribution, this is for Debian/Ubuntu. Just install them the normal way, for example like this if you use apt and Pip
should be able to install CFFI properly:

> sudo apt-get install python-dev libffi-dev

8.2 Overview

8.2.1 Basics

There are 4 basic classes you will use in Easymunk.

Rigid Bodies (easymunk.Body) A rigid body holds the physical properties of an object. (mass, position, rotation,
velocity, etc.) It does not have a shape by itself. If you’ve done physics with particles before, rigid bodies differ
mostly in that they are able to rotate. Rigid bodies generally tend to have a 1:1 correlation to sprites in a game.
You should structure your game so that you use the position and rotation of the rigid body for drawing your
sprite.

Collision Shapes (easymunk.Circle, easymunk.Segment and easymunk.Poly) By attaching shapes to
bodies, you can define the a body’s shape. You can attach many shapes to a single body to define a complex
shape, or none if it doesn’t require a shape.

Constraints/Joints (easymunk.constraint.PinJoint, easymunk.constraint.SimpleMotor and many others)
You can attach constraints between two bodies to constrain their behavior, for example to keep a fixed distance
between two bodies.

Spaces (easymunk.Space) Spaces are the basic simulation unit in Easymunk. You add bodies, shapes and con-
straints to a space, and then update the space as a whole. They control how all the rigid bodies, shapes, and
constraints interact together.

The actual simulation is done by the Space. After adding the objects that should be simulated to the Space time is
moved forward in small steps with the easymunk.Space.step() function.

8.2.2 Model your physics objects

8.2.2.1 Object shape

What you see on the screen doesn’t necessarily have to be exactly the same shape as the actual physics object. Usually
the shape used for collision detection (and other physics simulation) is much simplified version of what is drawn on
the screen. Even high end AAA games separate the collision shape from what is drawn on screen.

There are a number of reasons why its good to separate the collision shape and what is drawn.

• Using simpler collision shapes are faster. So if you have a very complicated object, for example a pine tree,
maybe it can make sense to simplify its collision shape to a triangle for performance.

20 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

• Using a simpler collision shape make the simulation better. Lets say you have a floor made of stone with a small
crack in the middle. If you drag a box over this floor it will get stuck on the crack. But if you simplify the floor
to just a plane you avoid having to worry about stuff getting stuck in the crack.

• Making the collision shape smaller (or bigger) than the actual object makes gameplay better. Lets say you have
a player controlled ship in a shoot-em-up type game. Many times it will feel more fun to play if you make the
collision shape a little bit smaller compared to what it should be based on how it looks.

You can see an example of this in the using_sprites.py example included in Easymunk. There the physics shape is
a triangle, but what is drawn is 3 boxes in a pyramid with a snake on top. Another example is in the platformer.py
example, where the player is drawn as a girl in red and gray. However the physics shape is just a couple of circle
shapes on top of each other.

8.2.2.2 Mass, weight and units

Sometimes users of Easymunk can be confused as to what unit everything is defined in. For example, is the mass of a
Body in grams or kilograms? Easymunk is unit-less and does not care which unit you use. If you pass in seconds to a
function expecting time, then your time unit is seconds. If you pass in pixels to functions that expect a distance, then
your unit of distance is pixels.

Then derived units are just a combination of the above. So in the case with seconds and pixels the unit of velocity
would be pixels / second.

(This is in contrast to some other physics engines which can have fixed units that you should use)

8.2.2.3 Looks before realism

How heavy is a bird in angry birds? It doest matter, its a cartoon!

Together with the units another key insight when setting up your simulation is to remember that it is a simulation, and
in many cases the look and feel is much more important than actual realism. So for example, if you want to model a
flipper game, the real power of the flipper and launchers doesn’t matter at all, what is important is that the game feels
“right” and is fun to use for your users.

Sometimes it make sense to start out with realistic units, to give you a feel for how big mass should be in comparison
to gravity for example.

There are exceptions to this of course, when you actually want realism over the looks. In the end it is up to you as a
user of Easymunk to decide.

8.2.3 Game loop / moving time forward

The most important part in your game loop is to keep the dt argument to the easymunk.Space.step() function
constant. A constant time step makes the simulation much more stable and reliable.

There are several ways to do this, some more complicated than others. Which one is best for a particular program
depends on the requirements.

Some good articles:

• http://gameprogrammingpatterns.com/game-loop.html

• http://gafferongames.com/game-physics/fix-your-timestep/

• http://www.koonsolo.com/news/dewitters-gameloop/

8.2. Overview 21

http://gameprogrammingpatterns.com/game-loop.html
http://gafferongames.com/game-physics/fix-your-timestep/
http://www.koonsolo.com/news/dewitters-gameloop/

easymunk Documentation, Release 0.9.1

8.2.4 Object tunneling

Sometimes an object can pass through another object even though its not supposed to. Usually this happens because
the object is moving so fast, that during a single call to space.step() the object moves from one side to the other.

step 1 step 2 step 3

v v v

There are several ways to mitigate this problem. Sometimes it might be a good idea to do more than one of these.

• Make sure the velocity of objects never get too high. One way to do that is to use a custom velocity function
with a limit built in on the bodies that have a tendency to move too fast:

def limit_velocity(body, gravity, damping, dt):
max_velocity = 1000
easymunk.Body.update_velocity(body, gravity, damping, dt)
l = body.velocity.length
if l > max_velocity:

scale = max_velocity / l
body.velocity = body.velocity * scale

body_to_limit.velocity_func = limit_velocity

Depending on the requirements it might make more sense to clamp the velocity over multiple frames instead.
Then the limit function could look like this instead:

def limit_velocity(body, gravity, damping, dt):
max_velocity = 1000
easymunk.Body.update_velocity(body, gravity, damping, dt)
if body.velocity.length > max_velocity:

body.velocity = body.velocity * 0.99

• For objects such as bullets, use a space query such as space.segment_query or space.segment_first.

• Use a smaller value for dt in the call to space.step. A simple way is to call space.step multiple times each frame
in your application. This will also help to make the overall simulation more stable.

• Double check that the center of gravity is at a reasonable point for all objects.

8.2.5 Unstable simulation?

Sometimes the simulation might not behave as expected. In extreme cases it can “blow up” and parts move anywhere
without logic.

There a a number of things to try if this happens:

• Make all the bodies of similar mass. It is easier for the physics engine to handle bodies with similar weight.

• Dont let two objects with infinite mass touch each other.

• Make the center of gravity in the middle of shapes instead of at the edge.

• Very thin shapes can behave strange, try to make them a little wider.

• Have a fixed time step (see the other sections of this guide).

22 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

• Call the Space.step function several times with smaller dt instead of only one time but with a bigger dt. (See the
docs of Space.step)

• If you use a Motor joint, make sure to set its max force. Otherwise its power will be near infinite.

• Double check that the center of gravity is at a reasonable point for all objects.

(Most of these suggestions are the same for most physics engines, not just Easymunk.)

8.2.6 Performance

Various tips that can improve performance:

• Run Python with optimizations on (will disable various useful but non-critical asserts). python -O
mycode.py

• Tweak the Space.iterations property.

• If possible let objects fall asleep with Space.sleep_time_threshold.

• Reduce usage of callback methods (like collision callbacks or custom update functions). These are much slower
than the default built in code.

Note that many times the actual simulation is quick enough, but reading out the result after each step and manipulating
the objects manually can have a significant overhead and performance cost.

8.2.7 Copy and Load/Save Easymunk objects

Most Easymunk objects can be copied and/or saved with pickle from the standard library. Since the implementation
is generic it will also work to use other serializer libraries such as jsonpickle (in contrast to pickle the jsonpickle
serializes to/from json) as long as they make use of the pickle infrastructure.

See the copy_and_pickle.py example for an example on how to save, load and copy Easymunk objects.

Note that the version of Easymunk used must be the same for the code saving as the verison used when loading the
saved object.

8.2.8 Additional info

As a complement to the Easymunk docs it can be good to read the Chipmunk docs. Its made for Chipmunk, but
Easymunk is build on top of Chipmunk and share most of the concepts, with the main difference being that Easymunk
is used from Python while Chipmunk is a C-library.

8.3 API Reference

8.3.1 easymunk Package

8.3. API Reference 23

https://jsonpickle.github.io/
http://chipmunk-physics.net/release/ChipmunkLatest-Docs/

easymunk Documentation, Release 0.9.1

Submodules

8.3.1.1 easymunk.geometry Module

8.3.1.2 easymunk.core Module

8.3.1.3 easymunk.linalg Module

8.3.1.4 easymunk.matplotlib Module

This submodule contains helper functions to help with working with datascience tools such as Jupyter notebooks and
Streamlit via matplotlib.

class easymunk.matplotlib.DrawOptions(ax=None, bb=None, dot_scale=0.1)
Bases: easymunk.drawing.DrawOptions

__init__(ax=None, bb=None, dot_scale=0.1)
DrawOptions for space.debug_draw() to draw a space on a ax object.

Typical usage:

>>> space = mk.Space()
>>> space.debug_draw("matplotlib")

You can control the color of a Shape by setting shape.color to the color you want it drawn in.

>>> shape = space.static_body.create_circle(10)
>>> shape.color = (1, 0, 0, 1) # will draw shape in red

See matplotlib_util.demo.py for a full example

Param

ax: matplotlib.Axes A matplotlib Axes object.

property ax

Return type <class ‘Axes’>

draw_circle(pos, radius, angle=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0,
0, 255))

Draw circle from position, radius, angle, and colors.

Return type None

draw_segment(a, b, color=Color(255, 0, 0, 255))
Draw simple thin segment.

Return type None

draw_fat_segment(a, b, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0,
0, 255))

Draw fat segment/capsule.

Return type None

draw_polygon(verts, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0,
255))

Draw polygon from list of vertices.

Return type None

24 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

draw_dot(size, pos, color)
Draw a dot/point.

Return type None

finalize_frame()
Executed after debug-draw. The default implementation is a NO-OP.

DRAW_COLLISION_POINTS = 4
Draw collision points.

Use on the flags property to control if collision points should be drawn or not.

DRAW_CONSTRAINTS = 2
Draw constraints.

Use on the flags property to control if constraints should be drawn or not.

DRAW_SHAPES = 1
Draw shapes.

Use on the flags property to control if shapes should be drawn or not.

property collision_point_color
The color of collisions.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

color_for_shape(shape)

Return type Color

property constraint_color
The color of constraints.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

draw_bb(bb)
Draw bounding box.

Return type None

draw_circle_shape(circle)
Default implementation that draws a circular shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_object(obj)
Draw Easymunk object.

draw_poly_shape(shape)
Default implementation that draws a polygonal shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_segment_shape(shape)
Default implementation that draws a segment shape.

This function is not affected by overriding the draw method of shape.

Return type None

8.3. API Reference 25

easymunk Documentation, Release 0.9.1

draw_shape(shape)
Draw shape using other drawing primitives.

Return type None

draw_vec2d(vec)
Draw point from vector.

property flags
Bit flags which of shapes, joints and collisions should be drawn.

By default all 3 flags are set, meaning shapes, joints and collisions will be drawn.

Example using the basic text only DebugDraw implementation (normally you would the desired backend
instead, such as pygame_util.DrawOptions or pyglet_util.DrawOptions):

shape_dynamic_color = Color(52, 152, 219, 255)

shape_kinematic_color = Color(39, 174, 96, 255)

property shape_outline_color
The outline color of shapes.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

shape_sleeping_color = Color(114, 148, 168, 255)

shape_static_color = Color(149, 165, 166, 255)

8.3.1.5 easymunk.pygame Module

This submodule contains helper functions to help with quick prototyping using easymunk together with pygame.

Intended to help with debugging and prototyping, not for actual production use in a full application. The methods
contained in this module is opinionated about your coordinate system and not in any way optimized.

class easymunk.pygame.DrawOptions(surface=None, flip_y=False)
Bases: easymunk.drawing.DrawOptions

surface: None.Surface

draw_circle(pos, radius, angle=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0,
0, 255))

Draw circle from position, radius, angle, and colors.

Return type None

draw_segment(a, b, color=Color(255, 0, 0, 255))
Draw simple thin segment.

Return type None

draw_fat_segment(a, b, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0,
0, 255))

Draw fat segment/capsule.

Return type None

draw_polygon(verts, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0,
255))

Draw polygon from list of vertices.

Return type None

26 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

draw_dot(size, pos, color)
Draw a dot/point.

Return type None

DRAW_COLLISION_POINTS = 4
Draw collision points.

Use on the flags property to control if collision points should be drawn or not.

DRAW_CONSTRAINTS = 2
Draw constraints.

Use on the flags property to control if constraints should be drawn or not.

DRAW_SHAPES = 1
Draw shapes.

Use on the flags property to control if shapes should be drawn or not.

property collision_point_color
The color of collisions.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

color_for_shape(shape)

Return type Color

property constraint_color
The color of constraints.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

draw_bb(bb)
Draw bounding box.

Return type None

draw_circle_shape(circle)
Default implementation that draws a circular shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_object(obj)
Draw Easymunk object.

draw_poly_shape(shape)
Default implementation that draws a polygonal shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_segment_shape(shape)
Default implementation that draws a segment shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_shape(shape)
Draw shape using other drawing primitives.

Return type None

8.3. API Reference 27

easymunk Documentation, Release 0.9.1

draw_vec2d(vec)
Draw point from vector.

finalize_frame()
Executed after debug-draw. The default implementation is a NO-OP.

property flags
Bit flags which of shapes, joints and collisions should be drawn.

By default all 3 flags are set, meaning shapes, joints and collisions will be drawn.

Example using the basic text only DebugDraw implementation (normally you would the desired backend
instead, such as pygame_util.DrawOptions or pyglet_util.DrawOptions):

mouse_pos()
Get position of the mouse pointer in pymunk coordinates.

Return type Vec2d

shape_dynamic_color = Color(52, 152, 219, 255)

shape_kinematic_color = Color(39, 174, 96, 255)

property shape_outline_color
The outline color of shapes.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

shape_sleeping_color = Color(114, 148, 168, 255)

shape_static_color = Color(149, 165, 166, 255)

to_pygame(p, surface=None)
Convenience method to convert pymunk coordinates to pygame surface local coordinates.

Note that in case positive_y_is_up is False, this function wont actually do anything except converting the
point to integers.

Return type Vec2d

from_pygame(p)
Convenience method to convert pygame surface local coordinates to pymunk coordinates

Return type Vec2d

8.3.1.6 easymunk.pyglet Module

This submodule contains helper functions to help with quick prototyping using easymunk together with pyglet.

Intended to help with debugging and prototyping, not for actual production use in a full application. The methods con-
tained in this module is opinionated about your coordinate system and not very optimized (they use batched drawing,
but there is probably room for optimizations still).

class easymunk.pyglet.DrawOptions(**kwargs)
Bases: easymunk.drawing.DrawOptions

draw_circle(pos, radius, angle=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0,
0, 255))

Draw circle from position, radius, angle, and colors.

Return type None

draw_segment(a, b, color=Color(255, 0, 0, 255))
Draw simple thin segment.

28 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

Return type None

draw_fat_segment(a, b, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0,
0, 255))

Draw fat segment/capsule.

Return type None

draw_polygon(verts, radius=0.0, outline_color=Color(255, 0, 0, 255), fill_color=Color(255, 0, 0,
255))

Draw polygon from list of vertices.

Return type None

draw_dot(size, pos, color)
Draw a dot/point.

Return type None

DRAW_COLLISION_POINTS = 4
Draw collision points.

Use on the flags property to control if collision points should be drawn or not.

DRAW_CONSTRAINTS = 2
Draw constraints.

Use on the flags property to control if constraints should be drawn or not.

DRAW_SHAPES = 1
Draw shapes.

Use on the flags property to control if shapes should be drawn or not.

property collision_point_color
The color of collisions.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

color_for_shape(shape)

Return type Color

property constraint_color
The color of constraints.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

draw_bb(bb)
Draw bounding box.

Return type None

draw_circle_shape(circle)
Default implementation that draws a circular shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_object(obj)
Draw Easymunk object.

draw_poly_shape(shape)
Default implementation that draws a polygonal shape.

This function is not affected by overriding the draw method of shape.

8.3. API Reference 29

easymunk Documentation, Release 0.9.1

Return type None

draw_segment_shape(shape)
Default implementation that draws a segment shape.

This function is not affected by overriding the draw method of shape.

Return type None

draw_shape(shape)
Draw shape using other drawing primitives.

Return type None

draw_vec2d(vec)
Draw point from vector.

finalize_frame()
Executed after debug-draw. The default implementation is a NO-OP.

property flags
Bit flags which of shapes, joints and collisions should be drawn.

By default all 3 flags are set, meaning shapes, joints and collisions will be drawn.

Example using the basic text only DebugDraw implementation (normally you would the desired backend
instead, such as pygame_util.DrawOptions or pyglet_util.DrawOptions):

shape_dynamic_color = Color(52, 152, 219, 255)

shape_kinematic_color = Color(39, 174, 96, 255)

property shape_outline_color
The outline color of shapes.

Should be a tuple of 4 ints between 0 and 255 (r, g, b, a).

shape_sleeping_color = Color(114, 148, 168, 255)

shape_static_color = Color(149, 165, 166, 255)

8.3.1.7 easymunk.pyxel Module

This submodule contains helper functions to help with quick prototyping using easymunk together with pyxel.

Intended to help with debugging and prototyping, not for actual production use in a full application. The methods con-
tained in this module is opinionated about your coordinate system and not very optimized (they use batched drawing,
but there is probably room for optimizations still).

Easymunk

Pymunk is a easy-to-use pythonic 2d physics library that can be used whenever you need 2d rigid body physics from
Python.

Homepage: http://www.easymunk.org

This is the main containing module of easymunk. It contains among other things the very central Space, Body and
Shape classes.

easymunk.chipmunk_version: str = '7.0.3-080c51480f018040b567e8f0440b121ae3acbae4 '
The Chipmunk version used with this Pymunk version.

30 Chapter 8. Contents

http://www.easymunk.org

easymunk Documentation, Release 0.9.1

This property does not show a valid value in the compiled documentation, only when you actually import
easymunk and do easymunk.chipmunk_version

The string is in the following format: <cpVersionString>R<github commit of chipmunk> where cpVersionString
is a version string set by Chipmunk and the git commit hash corresponds to the git hash of the chipmunk source
from github.com/viblo/Chipmunk2D included with easymunk.

8.4 Examples

Here you will find a list of the included examples. Each example have a short description and a screenshot (if applica-
ble).

To look at the source code of an example open it on github by following the link. The examples are also included in
the source distribution of Easymunk (but not if you install using the wheel file). You can find the source distribution
at PyPI, https://pypi.org/project/pymunk/#files (file named pymunk-x.y.z.zip).

8.4.1 Jupyter Notebooks

There are a couple examples that are provided as Jupyter Notebooks (.ipynb). They are possible to either view online
in a browser directly on github, or opened as a Notebook.

8.4.1.1 matplotlib_util_demo.ipynb

Displays the same space as the pygame and pyglet draw demos, but using matplotlib and the notebook.

Source: examples/matplotlib_util_demo.ipynb

8.4. Examples 31

https://pypi.org/project/pymunk/#files
https://github.com/viblo/pymunk/blob/master/examples/matplotlib_util_demo.ipynb

easymunk Documentation, Release 0.9.1

8.4.1.2 newtons_cradle.ipynb

Similar simulation as newtons_cradle.py, but this time as a Notebook. Compared to the draw demo this demo will
output a animation of the simulated space.

Source: examples/newtons_cradle.ipynb

8.4.2 Standalone Python

To run the examples yourself either install easymunk or run it using the convenience run.py script.

Given that easymunk is installed where your python will find it:

>cd examples
>python breakout.py

Each example contains something unique. Not all of the examples use the same style. For example, some use the
easymunk.pygame_util module to draw stuff, others contain the actual drawing code themselves. However, each
example is self contained. Except for external libraries (such as pygame) and easymunk each example can be run
directly to make it easy to read the code and understand what happens even if it means that some code is repeated for
each example.

If you have made something that uses easymunk and would like it displayed here or in a showcase section of the site,
feel free to contact me!

32 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/newtons_cradle.ipynb

easymunk Documentation, Release 0.9.1

Example files

• arrows.py

• balls_and_lines.py

• basic_test.py

• bouncing_balls.py

• box2d_pyramid.py

• box2d_vertical_stack.py

• breakout.py

• constraints.py

• contact_and_no_flipy.py

• contact_with_friction.py

• copy_and_pickle.py

• damped_rotary_spring_pointer.py

• deformable.py

• flipper.py

• index_video.py

• kivy_pymunk_demo

• logo.py

• newtons_cradle.py

• platformer.py

• playground.py

• point_query.py

• py2exe_setup__basic_test.py

• py2exe_setup__breakout.py

• pygame_demo.py

• pyglet_demo.py

• shapes_for_draw_demos.py

• slide_and_pinjoint.py

• spiderweb.py

• tangram.py

• tank.py

• using_sprites.py

• using_sprites_pyglet.py

8.4. Examples 33

easymunk Documentation, Release 0.9.1

8.4.2.1 arrows.py

Source: examples/arrows.py

Showcase of flying arrows that can stick to objects in a somewhat realistic looking way.

34 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/arrows.py

easymunk Documentation, Release 0.9.1

8.4.2.2 balls_and_lines.py

Source: examples/balls_and_lines.py

This example lets you dynamically create static walls and dynamic balls

8.4. Examples 35

https://github.com/viblo/pymunk/blob/master/examples/balls_and_lines.py

easymunk Documentation, Release 0.9.1

8.4.2.3 basic_test.py

Source: examples/basic_test.py

Very simple example that does not depend on any third party library such as pygame or pyglet like the other examples.

8.4.2.4 bouncing_balls.py

Source: examples/bouncing_balls.py

This example spawns (bouncing) balls randomly on a L-shape constructed of two segment shapes. Not interactive.

36 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/basic_test.py
https://github.com/viblo/pymunk/blob/master/examples/bouncing_balls.py

easymunk Documentation, Release 0.9.1

8.4.2.5 box2d_pyramid.py

Source: examples/box2d_pyramid.py

Remake of the pyramid demo from the box2d testbed.

8.4. Examples 37

https://github.com/viblo/pymunk/blob/master/examples/box2d_pyramid.py

easymunk Documentation, Release 0.9.1

8.4.2.6 box2d_vertical_stack.py

Source: examples/box2d_vertical_stack.py

Remake of the veritcal stack demo from the box2d testbed.

8.4.2.7 breakout.py

Source: examples/breakout.py

Very simple breakout clone. A circle shape serves as the paddle, then breakable bricks constructed of Poly-shapes.

The code showcases several pymunk concepts such as elasitcity, impulses, constant object speed, joints, collision
handlers and post step callbacks.

38 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/box2d_vertical_stack.py
https://github.com/viblo/pymunk/blob/master/examples/breakout.py

easymunk Documentation, Release 0.9.1

8.4.2.8 constraints.py

Source: examples/constraints.py

Pymunk constraints demo. Showcase of all the constraints included in easymunk.

Adapted from the Chipmunk Joints demo: https://github.com/slembcke/Chipmunk2D/blob/master/demo/Joints.c

8.4. Examples 39

https://github.com/viblo/pymunk/blob/master/examples/constraints.py
https://github.com/slembcke/Chipmunk2D/blob/master/demo/Joints.c

easymunk Documentation, Release 0.9.1

8.4.2.9 contact_and_no_flipy.py

Source: examples/contact_and_no_flipy.py

This example spawns (bouncing) balls randomly on a L-shape constructed of two segment shapes. For each collision
it draws a red circle with size depending on collision strength. Not interactive.

40 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/contact_and_no_flipy.py

easymunk Documentation, Release 0.9.1

8.4.2.10 contact_with_friction.py

Source: examples/contact_with_friction.py

This example spawns (bouncing) balls randomly on a L-shape constructed of two segment shapes. Displays collsion
strength and rotating balls thanks to friction. Not interactive.

8.4. Examples 41

https://github.com/viblo/pymunk/blob/master/examples/contact_with_friction.py

easymunk Documentation, Release 0.9.1

8.4.2.11 copy_and_pickle.py

Source: examples/copy_and_pickle.py

This example shows how you can copy, save and load a space using pickle.

42 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/copy_and_pickle.py

easymunk Documentation, Release 0.9.1

8.4.2.12 damped_rotary_spring_pointer.py

Source: examples/damped_rotary_spring_pointer.py

This example showcase an arrow pointing or aiming towards the cursor.

8.4. Examples 43

https://github.com/viblo/pymunk/blob/master/examples/damped_rotary_spring_pointer.py

easymunk Documentation, Release 0.9.1

8.4.2.13 deformable.py

Source: examples/deformable.py

This is an example on how the autogeometry can be used for deformable terrain.

44 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/deformable.py

easymunk Documentation, Release 0.9.1

8.4.2.14 flipper.py

Source: examples/flipper.py

A very basic flipper game.

8.4. Examples 45

https://github.com/viblo/pymunk/blob/master/examples/flipper.py

easymunk Documentation, Release 0.9.1

8.4.2.15 index_video.py

Source: examples/index_video.py

Program used to generate the logo animation on the pymunk main page.

This program will showcase several features of Pymunk, such as collisions, debug drawing, automatic generation of
shapes from images, motors, joints and sleeping bodies.

46 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/index_video.py

easymunk Documentation, Release 0.9.1

8.4.2.16 kivy_pymunk_demo

Source: examples/kivy_pymunk_demo

A rudimentary port of the intro video used for the intro animation on pymunk.org. The code is tested on both Windows
and Android.

Note that it doesn’t display Kivy best practices, the intro_video code was just converted to Kivy in the most basic way
to show that its possible, its not supposed to show the best way to structure a Kivy application using Pymunk.

8.4. Examples 47

https://github.com/viblo/pymunk/blob/master/examples/kivy_pymunk_demo

easymunk Documentation, Release 0.9.1

8.4.2.17 logo.py

Source: examples/logo.py

A very simple script to create the Easymunk Logo from pixel-art.

It opens a screen with the logo. Press Alt+1 to save a screenshot to the desktop.

8.4.2.18 newtons_cradle.py

Source: examples/newtons_cradle.py

A screensaver version of Newton’s Cradle with an interactive mode.

48 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/logo.py
https://github.com/viblo/pymunk/blob/master/examples/newtons_cradle.py

easymunk Documentation, Release 0.9.1

8.4.2.19 platformer.py

Source: examples/platformer.py

Showcase of a very basic 2d platformer

The red girl sprite is taken from Sithjester’s RMXP Resources: http://untamed.wild-refuge.net/rmxpresources.php?
characters

Note: The code of this example is a bit messy. If you adapt this to your own code you might want to structure it a bit
differently.

8.4.2.20 playground.py

Source: examples/playground.py

A basic playground. Most interesting function is draw a shape, basically move the mouse as you want and pymunk
will approximate a Poly shape from the drawing.

8.4. Examples 49

https://github.com/viblo/pymunk/blob/master/examples/platformer.py
http://untamed.wild-refuge.net/rmxpresources.php?characters
http://untamed.wild-refuge.net/rmxpresources.php?characters
https://github.com/viblo/pymunk/blob/master/examples/playground.py

easymunk Documentation, Release 0.9.1

8.4.2.21 point_query.py

Source: examples/point_query.py

This example showcase point queries by highlighting the shape under the mouse pointer.

50 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/point_query.py

easymunk Documentation, Release 0.9.1

8.4.2.22 py2exe_setup__basic_test.py

Source: examples/py2exe_setup__basic_test.py

Simple example of py2exe to create a exe of the basic_test example.

Tested on py2exe 0.9.2.2 on python 3.4

8.4. Examples 51

https://github.com/viblo/pymunk/blob/master/examples/py2exe_setup__basic_test.py

easymunk Documentation, Release 0.9.1

8.4.2.23 py2exe_setup__breakout.py

Source: examples/py2exe_setup__breakout.py

Example script to create a exe of the breakout example using py2exe.

Tested on py2exe 0.9.2.2 on python 3.4

8.4.2.24 pygame_demo.py

Source: examples/pygame_demo.py

Showcase what the output of easymunk.pygame_util draw methods will look like.

See pyglet_util_demo.py for a comparison to pyglet.

8.4.2.25 pyglet_demo.py

Source: examples/pyglet_demo.py

Showcase what the output of easymunk.pyglet_util draw methods will look like.

See pygame_util_demo.py for a comparison to pygame.

8.4.2.26 shapes_for_draw_demos.py

Source: examples/shapes_for_draw_demos.py

Helper function fill_space for the draw demos. Adds a lot of stuff to a space.

8.4.2.27 slide_and_pinjoint.py

Source: examples/slide_and_pinjoint.py

A L shape attached with a joint and constrained to not tip over.

This example is also used in the Get Started Tutorial.

52 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/py2exe_setup__breakout.py
https://github.com/viblo/pymunk/blob/master/examples/pygame_demo.py
https://github.com/viblo/pymunk/blob/master/examples/pyglet_demo.py
https://github.com/viblo/pymunk/blob/master/examples/shapes_for_draw_demos.py
https://github.com/viblo/pymunk/blob/master/examples/slide_and_pinjoint.py

easymunk Documentation, Release 0.9.1

8.4.2.28 spiderweb.py

Source: examples/spiderweb.py

Showcase of a elastic spiderweb (drawing with pyglet)

It is possible to grab one of the crossings with the mouse

8.4. Examples 53

https://github.com/viblo/pymunk/blob/master/examples/spiderweb.py

easymunk Documentation, Release 0.9.1

8.4.2.29 tangram.py

Source: examples/tangram.py

Remake of the pyramid demo from the box2d testbed.

8.4.2.30 tank.py

Source: examples/tank.py

Port of the Chipmunk tank demo. Showcase a topdown tank driving towards the mouse, and hitting obstacles on the
way.

54 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/tangram.py
https://github.com/viblo/pymunk/blob/master/examples/tank.py

easymunk Documentation, Release 0.9.1

8.4.2.31 using_sprites.py

Source: examples/using_sprites.py

Very basic example of using a sprite image to draw a shape more similar how you would do it in a real game instead
of the simple line drawings used by the other examples.

8.4. Examples 55

https://github.com/viblo/pymunk/blob/master/examples/using_sprites.py

easymunk Documentation, Release 0.9.1

8.4.2.32 using_sprites_pyglet.py

Source: examples/using_sprites_pyglet.py

This example is a clone of the using_sprites example with the difference that it uses pyglet instead of pygame to
showcase sprite drawing.

56 Chapter 8. Contents

https://github.com/viblo/pymunk/blob/master/examples/using_sprites_pyglet.py

easymunk Documentation, Release 0.9.1

8.5 Showcase

This page shows some uses of Easymunk. If you also have done something using Easymunk please let me know and I
can add it here!

8.5. Showcase 57

easymunk Documentation, Release 0.9.1

58 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

8.5.1 Games

My Sincerest Apologies
made by The Larry and Dan show (mauve, larry). Retrieved 2018-10-25
Winner of PyWeek 24 (Overall Team Entry)
A game of fun, shooting, and “I’m sorry to put you through this”.
A fabricator robot on Mars was supposed to make a bunch of robots!
But it got lazy and made robots that could make other robots. And
it made them smarter than they should have been. Now they’ve all
gone off and hidden away behind various tanks and computers.
Happily, he knew how to construct you, a simple fighting robot. It’s
your job to clean out each area!
See Daniel Popes teardown here for additional details

Beneath the Ice
made by Team Chimera (mit-mit, Lucid Design Ar). Retrieved 2016-09-25
Winner of PyWeek 22 (Overall Team Entry)
Beneath the Ice is a submarine exploration game and puzzle solving
adventure! Uncover a mysterious pariah who can’t let you discover
his secrets, who can’t let you in! Team Chimera take 3!

Invisipin
made by Tee. Retrieved 2016-01-25
Winner of PyWeek 20 (Overall Individual Entry)
A pachinko-like puzzle game. Play some balls and watch their
movement carefully (i.e. collect data) to reconstruct the board!

Angry Birds in Python
made by Estevao Fonseca. Retrieved 2016-10-30
Angry Birds game written in python using pygame and pymunk

SubTerrex
made by Paul Paterson. Retrieved 2016-01-25
A cave exploration game where you explore caves by descending
into them on ropes.

8.5. Showcase 59

https://pyweek.org/e/wasabi24/
http://mauveweb.co.uk/posts/2018/03/my-sincerest-apologies-teardown.html
https://pyweek.org/e/chimera22/
https://pyweek.org/e/Tee-py20/
https://github.com/estevaofon/angry-birds-python
http://www.pygame.org/project-SubTerrex-2389-.html

easymunk Documentation, Release 0.9.1

60 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

8.5.2 Non-Games

PySimpleGUI Desktop Demo
made by PySimpleGUI/Mike. Retrieved 2020-10-13
Demo of using PySimpleGUI together with Easymunk to create
bouncing balls directly on the desktop, thanks to a transparent con-
tainer window.

Legged robot using differential evolution and perception
made by Nav. Retrieved 2020-08-20
Legged robot first using Differential Evolution to navigate terrain
and then learning to recognise the world via perception from its
senses.

Simulation of ambient chimes | Circle in a hexagon
made by Jan Abraham.Retrieved 2019-11-17
An ambient piano chord produced by the simulation of a bouncing
ball. The calculations were carried out using pymunk library. Tun-
ing: Kirnberger III

I teach AI to move with using NEAT
made by Cheesy AI. Retrieved 2019-11-17
Recently I learned Easymunk 2d physics library. It is very cool so
with that I made 2d Humanoid for my AI. Today I’m going to teach
AI to move forward with NEAT. NEAT is a genetic algorithm for the
generation of evolving artificial neural networks. Results are quite
weird but it will be fun. Have fun!

Car Configuration with Differential Evolotion
made by Nav. Retrieved 2019-05-05
Among the simplest AI algorithms: Differential Evolution. Brought
to life with Easymunk and Pygame. Each car has an objective of
reaching the end of the track, but has only 15 seconds to do so.
They explore the multidimensional search space of vehicle speed,
chassis width, chassis height and wheel radius, to find a variety of
configurations among which few are successful in helping the car
cross the track.
Source code available at github at https://github.com/nav9/
evolutionaryCarRace

VirtuaPlant
made by Jan Seidl. Retrieved 2018-06-13
VirtuaPlant is a Industrial Control Systems simulator which adds a
“similar to real-world control logic” to the basic “read/write tags”
feature of most PLC simulators. Paired with a game library and 2d
physics engine, VirtuaPlant is able to present a GUI simulating the
“world view” behind the control system allowing the user to have a
vision of the would-be actions behind the control systems.

The Python Arcade Library
made by Paul. Retrieved 2018-03-05
Arcade is an easy-to-learn Python library for creating 2D video
games. It is not directly tied to Easymunk, but includes a num-
ber of examples and helper classes to use Easymunk physics from a
Arcade application.

billiARds A Game of Augmented Reality Pool
made by Alex Baikovitz. Retrieved 2017-05-21
Alex built billiARds for his 15-112 (Fundamentals of Programming
and Computer Science) term project at Carnegie Mellon University.
Made in Python3 using OpenCV, Pygame, and Easymunk. Users
can simply use a pool cue stick and run the program on any ordinary
surface.

pyPhysicsSandbox
made by Jay Shaffstall. Retrieved 2017-01-01
pyPhysicsSandbox is a simple wrapper around Pymunk that makes
it easy to write code to explore 2D physics simulations. It’s intended
for use in introductory programming classrooms.

Carrom Simulation
made by Samiran Roy. Retrieved 2016-10-27
An open source Carrom Simulator interface for testing intelli-
gent/learning agents. It provides an interface that allows you to
design agents that that play carrom. It is built in python, using
pygame + pymunk. This is the course project for CS 747 - Founda-
tions of Intelligent and Learning Agents, taught by Prof. Shivaram
Kalyanakrishnan at IIT Bombay.

Self Driving Car
made by Matt Harvey. Retrieved 2016-08-07
A project that trains a virtual car to how to move an object around
a screen (drive itself) without running into obstacles using a type of
reinforcement learning called Q-Learning.

8.5. Showcase 61

https://github.com/PySimpleGUI/PySimpleGUI
https://www.youtube.com/watch?v=n-OCy6ToLsU&feature=youtu.be
https://youtu.be/7MRJS8ZV9VA
https://youtu.be/ipWIH1g9DSw
https://youtu.be/7ok4ESgrKg0
https://github.com/nav9/evolutionaryCarRace
https://github.com/nav9/evolutionaryCarRace
https://wroot.org/projects/virtuaplant/
http://arcade.academy/examples/index.html
https://youtu.be/5ft3SDvuhgw
https://github.com/jshaffstall/PyPhysicsSandbox
https://github.com/samiranrl/Carrom_rl
https://github.com/harvitronix/reinforcement-learning-car

easymunk Documentation, Release 0.9.1

8.5.3 Papers / Science

Pymunk has been used or referenced in a number of scientific papers.

List of papers which has used or mentioned Pymunk:

• Mori, Hiroki, Masayuki Masuda, and Tetsuya Ogata. “Tactile-based curiosity maximizes tactile-rich object-
oriented actions even without any extrinsic rewards.” In 2020 Joint IEEE 10th International Conference on
Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1-7. IEEE, 2020.

• Jiang, Lincheng. “A Computational Method to Generate One-story Floor Plans for Nursing Homes Based on
Daylight Hour Potential and Shortest Path of Circulations.” (2020).

• Chen, Ricky TQ, Brandon Amos, and Maximilian Nickel. “Learning Neural Event Functions for Ordinary
Differential Equations.” arXiv preprint arXiv:2011.03902 (2020).

• Jain, Ayush, Andrew Szot, and Joseph J. Lim. “Generalization to New Actions in Reinforcement Learning.”
arXiv preprint arXiv:2011.01928 (2020).

• Petitgirard, Julien, Tony Piguet, Philippe Baucour, Didier Chamagne, Eric Fouillien, and Jean-Christophe Del-
mare. “Steady State and 2D Thermal Equivalence Circuit for Winding Heads—A New Modelling Approach.”
Mathematical and Computational Applications 25, no. 4 (2020): 70.

• Hook, Joosep, Seif El-Sedky, Varuna De Silva, and Ahmet Kondoz. “Learning Data-Driven Decision-Making
Policies in Multi-Agent Environments for Autonomous Systems.” Cognitive Systems Research (2020).

• Matthews, Elizabeth A., and Juan E. Gilbert. “ATLAS CHRONICLE: DEVELOPMENT AND VERIFICA-
TION OF A SYSTEM FOR PROCEDURAL GENERATION OF STORY-DRIVEN GAMES.”

• Ipe, Navin. “Context and event-based cognitive memory constructs for embodied intelligence machines.”

• Ipe, Navin. “An In-Memory Physics Environment as a World Model for Robot Motion Planning.” (2020).

• Li, Yunzhu, Antonio Torralba, Animashree Anandkumar, Dieter Fox, and Animesh Garg. “Causal Discovery in
Physical Systems from Videos.” arXiv preprint arXiv:2007.00631 (2020).

• Suh, H. J., and Russ Tedrake. “The Surprising Effectiveness of Linear Models for Visual Foresight in Object
Pile Manipulation.” arXiv preprint arXiv:2002.09093 (2020).

• Vos, Bastiaan. “The Sailing Tug: A feasibility study on the application of Wind-Assisted towing of the Thialf.”
(2019).

• Wong, Eric C. “Example Based Hebbian Learning may be sufficient to support Human Intelligence.” bioRxiv
(2019): 758375.

• Manoury, Alexandre, and Cédric Buche. “Hierarchical Affordance Discovery using Intrinsic Motivation.” 2019.

• Mounsif, Mehdi, Sebastien Lengagne, Benoit Thuilot, and Lounis Adouane. “Universal Notice Network: Trans-
ferable Knowledge Among Agents.” In 2019 6th International Conference on Control, Decision and Information
Technologies (CoDIT), pp. 563-568. IEEE, 2019.

• Du, Yilun, and Karthik Narasimhan. “Task-Agnostic Dynamics Priors for Deep Reinforcement Learning.” In
International Conference on Machine Learning, pp. 1696-1705. 2019.

• Siegel, Max Harmon. “Compositional simulation in perception and cognition.” PhD diss., Massachusetts Insti-
tute of Technology, 2018.

• Caselles-Dupré, Hugo, Louis Annabi, Oksana Hagen, Michael Garcia-Ortiz, and David Filliat. “Flatland:
a Lightweight First-Person 2-D Environment for Reinforcement Learning.” arXiv preprint arXiv:1809.00510
(2018).

• Yingzhen, Li, and Stephan Mandt. “Disentangled Sequential Autoencoder.” In International Conference on
Machine Learning, pp. 5656-5665. 2018.

62 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

• Melnik, Andrew. “Sensorimotor Processing in the Human Brain and in Cognitive Architectures.” (2018).

• Li, Yingzhen, and Stephan Mandt. “A Deep Generative Model for Disentangled Representations of Sequential
Data.” arXiv preprint arXiv:1803.02991 (2018).

• Hongsuk Yi, Eunsoo Park and Seungil Kim (, , and .) “Deep Reinforcement Learning for Autonomous Vehicle
Driving” (“ .”) 2017 Korea Software Engineering Conference ((2017): 784-786.)

• Fraccaro, Marco, Simon Kamronn, Ulrich Paquet, and Ole Winther. “A Disentangled Recognition and Nonlinear
Dynamics Model for Unsupervised Learning.” arXiv preprint arXiv:1710.05741 (2017).

• Kister, Ulrike, Konstantin Klamka, Christian Tominski, and Raimund Dachselt. “GraSp: Combining Spatially-
aware Mobile Devices and a Display Wall for Graph Visualization and Interaction.” In Computer Graphics
Forum, vol. 36, no. 3, pp. 503-514. 2017.

• Kim, Neil H., Gloria Lee, Nicholas A. Sherer, K. Michael Martini, Nigel Goldenfeld, and Thomas E. Kuhlman.
“Real-time transposable element activity in individual live cells.” Proceedings of the National Academy of
Sciences 113, no. 26 (2016): 7278-7283.

• Baheti, Ashutosh, and Arobinda Gupta. “Non-linear barrier coverage using mobile wireless sensors.” In Com-
puters and Communications (ISCC), 2017 IEEE Symposium on, pp. 804-809. IEEE, 2017.

• Espeso, David R., Esteban Martínez-García, Victor De Lorenzo, and Ángel Goñi-Moreno. “Physical forces
shape group identity of swimming Pseudomonas putida cells.” Frontiers in Microbiology 7 (2016).

• Goni-Moreno, Angel, and Martyn Amos. “DiSCUS: A Simulation Platform for Conjugation Computing.” In
International Conference on Unconventional Computation and Natural Computation, pp. 181-191. Springer
International Publishing, 2015.

• Amos, Martyn, et al. “Bacterial computing with engineered populations.” Phil. Trans. R. Soc. A 373.2046
(2015): 20140218.

• Crane, Beth, and Stephen Sherratt. “rUNSWift 2D Simulator; Behavioural Simulation Integrated with the
rUNSWift Architecture.” UNSW School of Computer Science and Engineering (2013).

• Miller, Chreston Allen. “Structural model discovery in temporal event data streams.” Diss. Virginia Polytechnic
Institute and State University, 2013.

• Pumar García, César. “Simulación de evolución dirigida de bacteriófagos en poblaciones de bacterias en 2D.”
(2013).

• Simoes, Manuel, and Caroline GL Cao. “Leonardo: a first step towards an interactive decision aid for port-
placement in robotic surgery.” Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on.
IEEE, 2013.

• Goni-Moreno, Angel, and Martyn Amos. “Discrete modelling of bacterial conjugation dynamics.” arXiv
preprint arXiv:1211.1146 (2012).

• Matthews, Elizabeth A. “ATLAS CHRONICLE: A STORY-DRIVEN SYSTEM TO CREATE STORY-DRIVEN
MAPS.” Diss. Clemson University, 2012.

• Matthews, Elizabeth, and Brian Malloy. “Procedural generation of story-driven maps.” Computer Games
(CGAMES), 2011 16th International Conference on. IEEE, 2011.

• Miller, Chreston, and Francis Quek. “Toward multimodal situated analysis.” Proceedings of the 13th interna-
tional conference on multimodal interfaces. ACM, 2011.

• Verdie, Yannick. “Surface gesture & object tracking on tabletop devices.” Diss. Virginia Polytechnic Institute
and State University, 2010.

• Agrawal, Vivek, and Ryan Kerwin. “Dynamic Robot Path Planning Among Crowds in Emergency Situations.”

List last updated 2020-11-17. If something is missing or wrong, please contact me!

8.5. Showcase 63

easymunk Documentation, Release 0.9.1

8.5.3.1 Cite Pymunk

If you use Pymunk in a published work and want to cite it, below is a bibtex example. Feel free to modify to fit your
style. (Make sure to modify the version number if included.):

@misc{pymunk,
author = {Victor Blomqvist},
title = {Pymunk: A easy-to-use pythonic rigid body 2d physics library (version 6.0.

→˓0)},
year = {2007},
url = {https://www.pymunk.org},

}

8.6 Tutorials

Easymunk has one tutorial that show a simple simulation from start to end.

After reading it make sure to also check out the Examples as most of them are easy to follow and showcase many of
the things you can do with easymunk.

8.6.1 Slide and Pin Joint Demo Step by Step

This is a step by step tutorial explaining the demo slide_and_pinjoint.py included in easymunk. You will find a
screenshot of it in the list of examples. It is probably a good idea to have the file near by if I miss something in the
tutorial or something is unclear.

64 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

8.6.1.1 Before we start

For this tutorial you will need:

• Python (of course)

• Pygame (found at www.pygame.org)

• Easymunk

Pygame is required for this tutorial and some of the included demos, but it is not required to run just easymunk.
Easymunk should work just fine with other similar libraries as well, for example you could easily translate this tutorial
to use Pyglet instead.

Easymunk is built on top of the 2d physics library Chipmunk. Chipmunk itself is written in C meaning Easymunk

8.6. Tutorials 65

easymunk Documentation, Release 0.9.1

need to call into the c code. The Cffi library helps with this, however if you are on a platform that I haven’t been
able to compile it on you might have to do it yourself. The good news is that it is very easy to do, in fact if you got
Easymunk by Pip install its arelady done!

When you have easymunk installed, try to import it from the python prompt to make sure it works and can be imported:

>>> import easymunk

More information on installation can be found here: Installation

If it doesnt work or you have some kind of problem, feel free to write a post in the chipmunk forum, contact me
directly or add your problem to the issue tracker: Contact & Support

8.6.1.2 An empty simulation

Ok, lets start. Chipmunk (and therefore Easymunk) has a couple of central concepts, which is explained pretty good
in this citation from the Chipmunk docs:

Rigid bodies A rigid body holds the physical properties of an object. (mass, position, rotation, velocity, etc.) It does
not have a shape by itself. If you’ve done physics with particles before, rigid bodies differ mostly in that they
are able to rotate.

Collision shapes By attaching shapes to bodies, you can define the body’s shape. You can attach many shapes to a
single body to define a complex shape, or none if it doesn’t require a shape.

Constraints/joints You can attach joints between two bodies to constrain their behavior.

Spaces Spaces are the basic simulation unit in Chipmunk. You add bodies, shapes and joints to a space, and then
update the space as a whole.

The documentation for Chipmunk can be found here: http://chipmunk-physics.net/release/ChipmunkLatest-Docs/ It
is for the c-library but is a good complement to the Easymunk documentation as the concepts are the same, just that
Easymunk is more pythonic to use.

The API documentation for Easymunk can be found here: API Reference.

Anyway, we are now ready to write some code:

import sys
import pygame
import easymunk #1

def main():
pygame.init()
screen = pygame.display.set_mode((600, 600))
pygame.display.set_caption("Joints. Just wait and the L will tip over")
clock = pygame.time.Clock()

space = easymunk.Space() #2
space.gravity = (0.0, 900.0)

while True:
for event in pygame.event.get():

if event.type == pygame.QUIT:
sys.exit(0)

elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
sys.exit(0)

screen.fill((255,255,255))

(continues on next page)

66 Chapter 8. Contents

http://chipmunk-physics.net/release/ChipmunkLatest-Docs/

easymunk Documentation, Release 0.9.1

(continued from previous page)

space.step(1/50.0) #3

pygame.display.flip()
clock.tick(50)

if __name__ == '__main__':
sys.exit(main())

The code will display a blank window, and will run a physics simulation of an empty space.

1. We need to import easymunk in order to use it. . .

2. We then create a space and set its gravity to something good. Remember that what is important is what looks
good on screen, not what the real world value is. 900 will make a good looking simulation, but feel free to
experiment when you have the full code ready.

3. In our game loop we call the step() function on our space. The step function steps the simulation one step
forward in time each time called.

Note: It is best to keep the step size constant and not adjust it depending on the framerate. The physic simulation will
work much better with a constant step size.

8.6.1.3 Falling balls

The easiest shape to handle (and draw) is the circle. Therefore our next step is to make a ball spawn once in while. In
many of the example demos all code is in one big pile in the main() function as they are so small and easy, but I will
extract some methods in this tutorial to make it more easy to follow. First, a function to add a ball to a space:

def add_ball(space):
mass = 3
radius = 25
body = easymunk.Body() # 1
x = random.randint(120, 300)
body.position = x, 50 # 2
shape = easymunk.Circle(body, radius) # 3
shape.mass = mass # 4
shape.friction = 1
space.add(body, shape) # 5
return shape

1. We first create the body of the ball.

2. And we set its position

3. And in order for it to collide with things, it needs to have one (or many) collision shape(s).

4. All bodies must have their moment of inertia set. In most cases its easiest to let Easymunk handle calculation
from shapes. So we set the mass of each shape, and then when added to space the body will automatically get
a proper mass and moment set. Another option is to set the density of each shape, or its also possible to set the
values directly on the body (or even adjust them afterwards).

5. To make the balls roll we set friction on the shape. (By default its 0).

6. Finally we add the body and shape to the space to include it in our simulation. Note that the body must always
be added to the space before or at the same time as any shapes attached to it.

8.6. Tutorials 67

easymunk Documentation, Release 0.9.1

Now that we can create balls we want to display them. Either we can use the built in pymunk_util package do draw
the whole space directly, or we can do it manually. The debug drawing functions included with Easymunk are good
for putting something together easy and quickly, while for example a polished game most probably will want to make
its own drawing code.

If we want to draw manually, our draw function could look something like this:

def draw_ball(screen, ball):
p = int(ball.body.position.x), int(ball.body.position.y)
pygame.draw.circle(screen, (0,0,255), p, int(ball.radius), 2)

And then called in this way (given we collected all the ball shapes in a list called balls):

for ball in balls:
draw_ball(screen, ball)

However, as we use pygame in this example we can instead use the debug_draw method already included in Easymunk
to simplify a bit. It first needs to be imported, and next we have to create a DrawOptions object with the options (what
surface to draw on in the case of Pygame):

import easymunk.pygame_util
...
draw_options = easymunk.pygame_util.DrawOptions(screen)

And after that when we want to draw all our shapes we would just do it in this way:

space.debug_draw(draw_options)

Most of the examples included with Easymunk uses this way of drawing.

With the add_ball function and the debug_draw call and a little code to spawn balls you should see a couple of balls
falling. Yay!

import sys, random
random.seed(1) # make the simulation the same each time, easier to debug
import pygame
import easymunk
import easymunk.pygame_util

#def add_ball(space):

def main():
pygame.init()
screen = pygame.display.set_mode((600, 600))
pygame.display.set_caption("Joints. Just wait and the L will tip over")
clock = pygame.time.Clock()

space = easymunk.Space()
space.gravity = (0.0, 900.0)

balls = []
draw_options = easymunk.pygame_util.DrawOptions(screen)

ticks_to_next_ball = 10
while True:

for event in pygame.event.get():
if event.type == pygame.QUIT:

(continues on next page)

68 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

(continued from previous page)

sys.exit(0)
elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:

sys.exit(0)

ticks_to_next_ball -= 1
if ticks_to_next_ball <= 0:

ticks_to_next_ball = 25
ball_shape = add_ball(space)
balls.append(ball_shape)

space.step(1/50.0)

screen.fill((255,255,255))
space.debug_draw(draw_options)

pygame.display.flip()
clock.tick(50)

if __name__ == '__main__':
main()

8.6.1.4 A static L

Falling balls are quite boring. We don’t see any physics simulation except basic gravity, and everyone can do gravity
without help from a physics library. So lets add something the balls can land on, two static lines forming an L. As with
the balls we start with a function to add an L to the space:

def add_static_L(space):
body = easymunk.Body(body_type = easymunk.Body.STATIC) # 1
body.position = (300, 300)
l1 = easymunk.Segment(body, (-150, 0), (255, 0), 5) # 2
l2 = easymunk.Segment(body, (-150, 0), (-150, -50), 5)
l1.friction = 1 # 3
l2.friction = 1

space.add(body, l1, l2) # 4
return l1,l2

1. We create a “static” body. The important step is to never add it to the space like the dynamic ball bodies. Note
how static bodies are created by setting the body_type of the body. Many times its easier to use the already
existing static body in the space (space.static_body), but we will make the L shape dynamic in just a little bit.

2. A line shaped shape is created here.

3. Set the friction.

4. Again, we only add the segments, not the body to the space.

Since we use Space.debug_draw to draw the space we dont need to do any special draw code for the Segments, but I
still include a possible draw function here just to show what it could look like:

def draw_lines(screen, lines):
for line in lines:

body = line.body
pv1 = body.position + line.a.rotated(body.angle) # 1
pv2 = body.position + line.b.rotated(body.angle)

(continues on next page)

8.6. Tutorials 69

easymunk Documentation, Release 0.9.1

(continued from previous page)

p1 = to_pygame(pv1) # 2
p2 = to_pygame(pv2)
pygame.draw.lines(screen, THECOLORS["lightgray"], False, [p1,p2])

1. In order to get the position with the line rotation we use this calculation. line.a is the first endpoint of the line,
line.b the second. At the moment the lines are static, and not rotated so we don’t really have to do this extra
calculation, but we will soon make them move and rotate.

2. This is a little function to convert coordinates from easymunk to pygame world. Now that we have it we can use
it in the draw_ball() function as well.

def to_pygame(p):
"""Small helper to convert easymunk vec2d to pygame integers"""
return round(p.x), round(p.y)

With the full code we should something like the below, and now we should see an inverted L shape in the middle will
balls spawning and hitting the shape.

import sys, random
random.seed(1) # make the simulation the same each time, easier to debug
import pygame
import easymunk
import easymunk.pymunk_util

#def to_pygame(p):
#def add_ball(space):
#def add_static_l(space):

def main():
pygame.init()
screen = pygame.display.set_mode((600, 600))
pygame.display.set_caption("Joints. Just wait and the L will tip over")
clock = pygame.time.Clock()

space = easymunk.Space()
space.gravity = (0.0, 900.0)

lines = add_static_L(space)
balls = []
draw_options = easymunk.pygame_util.DrawOptions(screen)

ticks_to_next_ball = 10
while True:

for event in pygame.event.get():
if event.type == pygame.QUIT:

sys.exit(0)
elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:

sys.exit(0)

ticks_to_next_ball -= 1
if ticks_to_next_ball <= 0:

ticks_to_next_ball = 25
ball_shape = add_ball(space)
balls.append(ball_shape)

space.step(1/50.0)

(continues on next page)

70 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

(continued from previous page)

screen.fill((255,255,255))
space.debug_draw(draw_options)

pygame.display.flip()
clock.tick(50)

if __name__ == '__main__':
main()

8.6.1.5 Joints (1)

A static L shape is pretty boring. So lets make it a bit more exciting by adding two joints, one that it can rotate around,
and one that prevents it from rotating too much. In this part we only add the rotation joint, and in the next we constrain
it. As our static L shape won’t be static anymore we also rename the function to add_L().

def add_L(space):
rotation_center_body = easymunk.Body(body_type=easymunk.Body.STATIC) # 1
rotation_center_body.position = (300, 300)

body = easymunk.Body()
body.position = (300, 300)
l1 = easymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)
l2 = easymunk.Segment(body, (-150.0, 0), (-150.0, -50.0), 5.0)
l1.friction = 1
l2.friction = 1
l1.mass = 8 # 2
l2.mass = 1
rotation_center_joint = easymunk.PinJoint(

body, rotation_center_body, (0, 0), (0, 0)
) # 3

space.add(l1, l2, body, rotation_center_joint)
return l1, l2

1. This is the rotation center body. Its only purpose is to act as a static point in the joint so the line can rotate
around it. As you see we never add any shapes to it.

2. The L shape will now be moving in the world, and therefor it can no longer be a static body. Here we see the
benefit of setting the mass on the shapes instead of the body, no need to figure out how big the moment should
be, and Easymunk will automatically calculate the center of gravity.

3. A pin joint allow two objects to pivot about a single point. In our case one of the objects will be stuck to the
world.

8.6.1.6 Joints (2)

In the previous part we added a pin joint, and now its time to constrain the rotating L shape to create a more interesting
simulation. In order to do this we modify the add_L() function:

def add_L(space):
rotation_center_body = easymunk.Body(body_type = pymunk.Body.STATIC)
rotation_center_body.position = (300,300)

rotation_limit_body = pymunk.Body(body_type = pymunk.Body.STATIC) # 1

(continues on next page)

8.6. Tutorials 71

easymunk Documentation, Release 0.9.1

(continued from previous page)

rotation_limit_body.position = (200,300)

body = pymunk.Body()
body.position = (300,300)
l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)
l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, -50.0), 5.0)
l1.friction = 1
l2.friction = 1
l1.mass = 8
l2.mass = 1

rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0))
joint_limit = 25
rotation_limit_joint = pymunk.SlideJoint(body, rotation_limit_body, (-100,0), (0,

→˓0), 0, joint_limit) # 2

space.add(l1, l2, body, rotation_center_joint, rotation_limit_joint)
return l1,l2

1. We add a body..

2. Create a slide joint. It behaves like pin joints but have a minimum and maximum distance. The two bodies can
slide between the min and max, and in our case one of the bodies is static meaning only the body attached with
the shapes will move.

8.6.1.7 Ending

You might notice that we never delete balls. This will make the simulation require more and more memory and use
more and more cpu, and this is of course not what we want. So in the final step we add some code to remove balls
from the simulation when they are bellow the screen.

balls_to_remove = []
for ball in balls:

if ball.body.position.y < 0: # 1
balls_to_remove.append(ball) # 2

for ball in balls_to_remove:
space.remove(ball, ball.body) # 3
balls.remove(ball) # 4

1. Loop the balls and check if the body.position is less than 0.

2. If that is the case, we add it to our list of balls to remove.

3. To remove an object from the space, we need to remove its shape and its body.

4. And then we remove it from our list of balls.

And now, done! You should have an inverted L shape in the middle of the screen being filled will balls, tipping over
releasing them, tipping back and start over. You can check slide_and_pinjoint.py included in pymunk, but it doesn’t
follow this tutorial exactly as I factored out a couple of blocks to functions to make it easier to follow in tutorial form.

If anything is unclear, not working feel free to raise an issue on github. If you have an idea for another tutorial you want
to read, or some example code you want to see included in pymunk, please write it somewhere (like in the chipmunk
forum)

The full code for this tutorial is:

72 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

import sys, random
random.seed(1) # make the simulation the same each time, easier to debug
import pygame
import pymunk
import pymunk.pygame_util

def add_ball(space):
"""Add a ball to the given space at a random position"""
mass = 3
radius = 25
inertia = pymunk.moment_for_circle(mass, 0, radius, (0,0))
body = pymunk.Body(mass, inertia)
x = random.randint(120,300)
body.position = x, 50
shape = pymunk.Circle(body, radius, (0,0))
shape.friction = 1
space.add(body, shape)
return shape

def add_L(space):
"""Add a inverted L shape with two joints"""
rotation_center_body = pymunk.Body(body_type = pymunk.Body.STATIC)
rotation_center_body.position = (300,300)

rotation_limit_body = pymunk.Body(body_type = pymunk.Body.STATIC)
rotation_limit_body.position = (200,300)

body = pymunk.Body(10, 10000)
body.position = (300,300)
l1 = pymunk.Segment(body, (-150, 0), (255.0, 0.0), 5.0)
l2 = pymunk.Segment(body, (-150.0, 0), (-150.0, -50.0), 5.0)
l1.friction = 1
l2.friction = 1
l1.mass = 8
l2.mass = 1

rotation_center_joint = pymunk.PinJoint(body, rotation_center_body, (0,0), (0,0))
joint_limit = 25
rotation_limit_joint = pymunk.SlideJoint(body, rotation_limit_body, (-100,0), (0,

→˓0), 0, joint_limit)

space.add(l1, l2, body, rotation_center_joint, rotation_limit_joint)
return l1,l2

def main():
pygame.init()
screen = pygame.display.set_mode((600, 600))
pygame.display.set_caption("Joints. Just wait and the L will tip over")
clock = pygame.time.Clock()

space = pymunk.Space()
space.gravity = (0.0, 900.0)

lines = add_L(space)
balls = []
draw_options = pymunk.pygame_util.DrawOptions(screen)

(continues on next page)

8.6. Tutorials 73

easymunk Documentation, Release 0.9.1

(continued from previous page)

ticks_to_next_ball = 10
while True:

for event in pygame.event.get():
if event.type == pygame.QUIT:

sys.exit(0)
elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:

sys.exit(0)

ticks_to_next_ball -= 1
if ticks_to_next_ball <= 0:

ticks_to_next_ball = 25
ball_shape = add_ball(space)
balls.append(ball_shape)

screen.fill((255,255,255))

balls_to_remove = []
for ball in balls:

if ball.body.position.y > 550:
balls_to_remove.append(ball)

for ball in balls_to_remove:
space.remove(ball, ball.body)
balls.remove(ball)

space.debug_draw(draw_options)

space.step(1/50.0)

pygame.display.flip()
clock.tick(50)

if __name__ == '__main__':
main()

8.6.2 External Tutorials

If you have made a tutorial that is using Easymunk in any way and want it mentioned here please send me a link and
I will happily add it. I also accept full tutorials to include directly here if you prefer, as long as they are of reasonable
quality and style. Check the source to see how the existing ones are built.

8.7 Benchmarks

To get a grip of the actual performance of Easymunk this page contains a number of benchmarks.

The full code of all benchmarks are available under the benchmarks folder.

Note that the the benchmarks are not yet updated for Easymunk 6.0, but tests look promising.

74 Chapter 8. Contents

https://github.com/viblo/easymunk/blob/master/benchmarks

easymunk Documentation, Release 0.9.1

8.7.1 Micro benchmarks

In order to measure the overhead created by Easymunk in the most common cases I have created two micro bench-
marks. They should show the speed of the actual wrapping code, which can tell how big overhead Easymunk creates,
and how big difference different wrapping methods does.

The most common thing a typical program using Easymunk does is to read out the position and angle from a Easymunk
object. Usually this is done each frame for every object in the simulation, so this is a important factor in how fast
something will be.

Given this our first test is:

t += b.position.x + b.position.y + b.angle

(see pymunk-get.py)

Running it is simple, for example like this for pymunk 4.0:

> python -m pip install pymunk==4.0
> python pymunk-get.py

The second test we do is based on the second heavy thing we can do, and that is using a callback, for example as a
collision handler or a position function:

def f(b,dt):
b.position += (1,0)

s.step(0.01)

(see pymunk-callback.py)

8.7.1.1 Results:

Tests run on a HP G1 1040 laptop with a Intel i7-4600U. Laptop runs Windows, and the tests were run inside a
VirtualBox VM running 64bit Debian. The CPython tests uses CPython from Conda, while the Pypy tests used a
manually downloaded Pypy. CPython 2.7 is using Cffi 1.7, the other tests Cffi 1.8.

Remember that these results doesn’t tell you how you game/application will perform, they can more be seen as a help
to identify performance issues and know differences between Pythons.

Pymunk-Get:

CPython 2.7.12 CPython 3.5.2 Pypy 5.4.1
Pymunk 5.1 2.1s 2.2s 0.36s
Pymunk 5.0 4.3s 4.5s 0.37s
Pymunk 4.0 1.0s 0.9s 0.52s

8.7. Benchmarks 75

easymunk Documentation, Release 0.9.1

Pymunk-Callback:

CPython 2.7.12 CPython 3.5.2 Pypy 5.4.1
Pymunk 5.1 5.7s 6.8s 1.1s
Pymunk 5.0 6.5s 7.3s 1.0s
Pymunk 4.0 5.1s 6.5s 4.5s

What we can see from these results is that you should use Pypy if you have the possibility since that is much faster than
regular CPython. We can also see that moving from Ctypes to Cffi between Pymunk 4 and 5 had a negative impact in
CPython, but positive impact on Pypy, and Pymunk 5 together with Pypy is with a big margin the fastest option.

The speed increase between 5.0 and 5.1 happened because the Vec2d class and how its handled internally in Easymunk
was changed to improve performance.

8.7.2 Compared to Other Physics Libraries

8.7.2.1 Cymunk

Cymunk is an alternative wrapper around Chipmunk. In contrast to Pymunk it uses Cython for wrapping (Pymunk
uses CFFI) which gives it a different performance profile. However, since both are built around Chipmunk the overall
speed will be very similar, only when information passes from/to Chipmunk will there be a difference. This is exactly
the kind of overhead that the micro benchmarks are made to measure.

Cymunk is not as feature complete as Easymunk, so in order to compare with Easymunk we have to make some ad-
justments. A major difference is that it does not implement the position_func function, so instead we do an alternative
callback test using the collision handler:

h = s.add_default_collision_handler()
def f(arb):

return false
h.pre_solve = f

s.step(0.01)

(see pymunk-collision-callback.py and cymunk-collision-callback.py)

Results

Tests run on a HP G1 1040 laptop with a Intel i7-4600U. Laptop runs Windows, and the tests were run inside a
VirtualBox VM running 64bit Debian. The CPython tests uses CPython from Conda, while the Pypy tests used a
manually downloaded Pypy. Cffi version 1.10.0 and Cython 0.25.2.

Since Cymunk doesnt have a proper release I used the latest master from its Github repository, hash 24845cc retrieved
on 2017-09-16.

76 Chapter 8. Contents

https://github.com/kivy/cymunk

easymunk Documentation, Release 0.9.1

Get:

CPython 3.5.3 Pypy 5.8
Pymunk 5.3 2.14s 0.33s
Cymunk 20170916 0.41s (10.0s)

Collision-Callback:

CPython 3.5.3 Pypy 5.8
Pymunk 5.3 3.71s 0.58s
Pymunk 20170916 0.95s (7.01s)

(Cymunk results on Pypy within parentheses since Cython is well known to be slow on Pypy)

What we can see from these results is that Cymunk on CPython is much faster than Easymunk on CPython, but
Pymunk takes the overall victory when we include Pypy.

Something we did not take into account is that you can trade convenience for performance and use Cython in the
application code as well to speed things up. I think this is the approach used in KivEnt which is the primary user of
Cymunk. However, that requires a much more complicated setup when you develop your application because of the
compiler requirements and code changes.

8.8 Advanced

In this section different “Advanced” topics are covered, things you normally dont need to worry about when you use
Easymunk but might be of interest if you want a better understanding of Easymunk for example to extend it.

First off, Easymunk is a pythonic wrapper around the C-library Chipmunk.

To wrap Chipmunk Easymunk uses CFFI in API mode. On top of the CFFI wrapping is a handmade pythonic layer to
make it nice to use from Python code.

8.8.1 Why CFFI?

This is a straight copy from the github issue tracking the CFFI upgrade. https://github.com/viblo/pymunk/issues/99

CFFI have a number of advantages but also a downsides.

Advantages (compared to ctypes):

• Its an active project. The developers and users are active, there are new releases being made and its possible to
ask and get answers within a day on the CFFI mailing list.

• Its said to be the way forward for Pypy, with promise of better performance compares to ctypes.

• A little easier than ctypes to wrap things since you can just copy-paste the c headers.

Disadvatages (compared to ctypes):

• ctypes is part of the CPython standard library, CFFI is not. That means that it will be more difficult to install
Easymunk if it uses CFFI, since a copy-paste install is no longer possible in an easy way.

8.8. Advanced 77

https://github.com/viblo/pymunk/issues/99

easymunk Documentation, Release 0.9.1

For me I see the 1st advantage as the main point. I have had great difficulties with strange segfaults with 64bit
pythons on windows, and also sometimes on 32bit python, and support for 64bit python on both windows and linux is
something I really want. Hopefully those problems will be easier to handle with CFFI since it has an active community.

Then comes the 3rd advantage, that its a bit easier to wrap the c code. For ctypes I have a automatic wrapping script
that does most of the low level wrapping, but its not supported, very difficult to set up (I only managed inside a VM
with linux) and quite annoying. CFFI would be a clear improvement.

For the disadvantage of ctypes I think it will be acceptable, even if not ideal. Many python packages have to be
installed in some way (like pygame), and nowadays with pip its very easy to do. So I hope that it will be ok.

8.8.2 Code Layout

Most of Easymunk should be quite straight forward.

Except for the documented API Easymunk has a couple of interesting parts. Low level bindings to Chipmunk, a
custom documentation generation extension and a customized setup.py file to allow compilation of Chipmunk.

The low level chipmunk bindings are located in the file extension_build.py.

docs/src/ext/autoexample.py A Sphinx extension that scans a directory and extracts the toplevel docstring. Used to
autogenerate the examples documentation.

easymunk/_chipmunk_cffi.py This file only contains a call to _chipmunk_cffi_abi.py, and exists mostly as a wrapper
to be able to switch between abi and api mode of Cffi. This is currently not in use in the relased code, but is
used during experimentation.

easymunk/_chipmkunk_cffi_abi.py This file contains the pure Cffi wrapping definitons. Bascially a giant string
created by copy-paster from the relevant header files of Chipmunk.

setup.py Except for the standard setup stuff this file also contain the custom build commands to build Chipmunk from
source, using a build_ext extension.

easymunk/tests/* Collection of (unit) tests. Does not cover all cases, but most core things are there. The tests require
a working chipmunk library file.

tools/* Collection of helper scripts that can be used to various development tasks such as generating documentation.

8.8.3 Tests

There are a number of unit tests included in the easymunk.tests package (easymunk/tests). Not exactly all the code is
tested, but most of it (at the time of writing its about 85% of the core parts).

The tests can be run by calling the module

> python -m pymunk.tests

Its possible to control which tests to run, by specifying a filtering argument. The matching is as broad as possi-
ble, so Test matches all the unit tests, test_arbiter all tests in test_arbiter.py and testResetitution matches the exact
testRestitution test case

> python -m pymunk.tests -f testRestitution

To see all options to the tests command use -h

> python -m pymunk.tests -h

Since the tests cover even the optional parts, you either have to make sure all the optional dependencies are installed,
or filter out those tests.

78 Chapter 8. Contents

easymunk Documentation, Release 0.9.1

8.8.4 Working with non-wrapped parts of Chipmunk

In case you need to use something that exist in Chipmunk but currently is not included in easymunk the easiest method
is to add it manually.

For example, lets assume that the is_sleeping property of a body was not wrapped by easymunk. The Chipmunk
method to get this property is named cpBodyIsSleeping.

First we need to check if its included in the cdef definition in extension_build.py. If its not just add it.

cpBool cpBodyIsSleeping(const cpBody *body);

Then to make it easy to use we want to create a python method that looks nice:

def is_sleeping(body):
return cp.cpBodyIsSleeping(body._body)

Now we are ready with the mapping and ready to use our new method.

8.8.5 Weak References and free Methods

Internally Easymunk allocates structs from Chipmunk (the c library). For example a Body struct is created from inside
the constructor method when a easymunk.Body is created. Because of this its important that the corresponding c side
memory is deallocated properly when not needed anymore, usually when the Python side object is garbage collected.
Most Easymunk objects use ffi.gc with a custom free function to do this. Note that the order of freeing is very important
to avoid errors.

8.9 Changelog

8.9.1 Easymunk 0.9.0 (2021-03-01)

Forked from easymunk 6.0.0

This is the first release of Easymunk.

Highlights - Major changes relative to Pymunk:

• Default to using angles rather than radians.

• Avoid using space.add/remove methods by adding factory functions in space.

• Create the Junction object to control multiple constraints between two objects.

8.10 License

8.9. Changelog 79

easymunk Documentation, Release 0.9.1

80 Chapter 8. Contents

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

81

easymunk Documentation, Release 0.9.1

82 Chapter 9. Indices and tables

PYTHON MODULE INDEX

c
easymunk.core, 24

e
easymunk, 30

g
easymunk.geometry, 24

l
easymunk.linalg, 24

m
easymunk.matplotlib, 24

p
easymunk.pygame, 26
easymunk.pyglet, 28
easymunk.pyxel, 30

83

easymunk Documentation, Release 0.9.1

84 Python Module Index

INDEX

Symbols
__init__() (easymunk.matplotlib.DrawOptions

method), 24

A
ax() (easymunk.matplotlib.DrawOptions property), 24

C
chipmunk_version (in module easymunk), 30
collision_point_color() (easy-

munk.matplotlib.DrawOptions property),
25

collision_point_color() (easy-
munk.pygame.DrawOptions property), 27

collision_point_color() (easy-
munk.pyglet.DrawOptions property), 29

color_for_shape() (easy-
munk.matplotlib.DrawOptions method),
25

color_for_shape() (easy-
munk.pygame.DrawOptions method), 27

color_for_shape() (easy-
munk.pyglet.DrawOptions method), 29

constraint_color() (easy-
munk.matplotlib.DrawOptions property),
25

constraint_color() (easy-
munk.pygame.DrawOptions property), 27

constraint_color() (easy-
munk.pyglet.DrawOptions property), 29

D
draw_bb() (easymunk.matplotlib.DrawOptions

method), 25
draw_bb() (easymunk.pygame.DrawOptions method),

27
draw_bb() (easymunk.pyglet.DrawOptions method),

29
draw_circle() (easymunk.matplotlib.DrawOptions

method), 24
draw_circle() (easymunk.pygame.DrawOptions

method), 26

draw_circle() (easymunk.pyglet.DrawOptions
method), 28

draw_circle_shape() (easy-
munk.matplotlib.DrawOptions method),
25

draw_circle_shape() (easy-
munk.pygame.DrawOptions method), 27

draw_circle_shape() (easy-
munk.pyglet.DrawOptions method), 29

DRAW_COLLISION_POINTS (easy-
munk.matplotlib.DrawOptions attribute),
25

DRAW_COLLISION_POINTS (easy-
munk.pygame.DrawOptions attribute), 27

DRAW_COLLISION_POINTS (easy-
munk.pyglet.DrawOptions attribute), 29

DRAW_CONSTRAINTS (easy-
munk.matplotlib.DrawOptions attribute),
25

DRAW_CONSTRAINTS (easy-
munk.pygame.DrawOptions attribute), 27

DRAW_CONSTRAINTS (easymunk.pyglet.DrawOptions
attribute), 29

draw_dot() (easymunk.matplotlib.DrawOptions
method), 24

draw_dot() (easymunk.pygame.DrawOptions
method), 26

draw_dot() (easymunk.pyglet.DrawOptions method),
29

draw_fat_segment() (easy-
munk.matplotlib.DrawOptions method),
24

draw_fat_segment() (easy-
munk.pygame.DrawOptions method), 26

draw_fat_segment() (easy-
munk.pyglet.DrawOptions method), 29

draw_object() (easymunk.matplotlib.DrawOptions
method), 25

draw_object() (easymunk.pygame.DrawOptions
method), 27

draw_object() (easymunk.pyglet.DrawOptions
method), 29

85

easymunk Documentation, Release 0.9.1

draw_poly_shape() (easy-
munk.matplotlib.DrawOptions method),
25

draw_poly_shape() (easy-
munk.pygame.DrawOptions method), 27

draw_poly_shape() (easy-
munk.pyglet.DrawOptions method), 29

draw_polygon() (easymunk.matplotlib.DrawOptions
method), 24

draw_polygon() (easymunk.pygame.DrawOptions
method), 26

draw_polygon() (easymunk.pyglet.DrawOptions
method), 29

draw_segment() (easymunk.matplotlib.DrawOptions
method), 24

draw_segment() (easymunk.pygame.DrawOptions
method), 26

draw_segment() (easymunk.pyglet.DrawOptions
method), 28

draw_segment_shape() (easy-
munk.matplotlib.DrawOptions method),
25

draw_segment_shape() (easy-
munk.pygame.DrawOptions method), 27

draw_segment_shape() (easy-
munk.pyglet.DrawOptions method), 30

draw_shape() (easymunk.matplotlib.DrawOptions
method), 25

draw_shape() (easymunk.pygame.DrawOptions
method), 27

draw_shape() (easymunk.pyglet.DrawOptions
method), 30

DRAW_SHAPES (easymunk.matplotlib.DrawOptions at-
tribute), 25

DRAW_SHAPES (easymunk.pygame.DrawOptions
attribute), 27

DRAW_SHAPES (easymunk.pyglet.DrawOptions at-
tribute), 29

draw_vec2d() (easymunk.matplotlib.DrawOptions
method), 26

draw_vec2d() (easymunk.pygame.DrawOptions
method), 27

draw_vec2d() (easymunk.pyglet.DrawOptions
method), 30

DrawOptions (class in easymunk.matplotlib), 24
DrawOptions (class in easymunk.pygame), 26
DrawOptions (class in easymunk.pyglet), 28

E
easymunk

module, 30
easymunk.core

module, 24
easymunk.geometry

module, 24
easymunk.linalg

module, 24
easymunk.matplotlib

module, 24
easymunk.pygame

module, 26
easymunk.pyglet

module, 28
easymunk.pyxel

module, 30

F
finalize_frame() (easy-

munk.matplotlib.DrawOptions method),
25

finalize_frame() (easy-
munk.pygame.DrawOptions method), 28

finalize_frame() (easymunk.pyglet.DrawOptions
method), 30

flags() (easymunk.matplotlib.DrawOptions property),
26

flags() (easymunk.pygame.DrawOptions property),
28

flags() (easymunk.pyglet.DrawOptions property), 30
from_pygame() (easymunk.pygame.DrawOptions

method), 28

M
module

easymunk, 30
easymunk.core, 24
easymunk.geometry, 24
easymunk.linalg, 24
easymunk.matplotlib, 24
easymunk.pygame, 26
easymunk.pyglet, 28
easymunk.pyxel, 30

mouse_pos() (easymunk.pygame.DrawOptions
method), 28

S
shape_dynamic_color (easy-

munk.matplotlib.DrawOptions attribute),
26

shape_dynamic_color (easy-
munk.pygame.DrawOptions attribute), 28

shape_dynamic_color (easy-
munk.pyglet.DrawOptions attribute), 30

shape_kinematic_color (easy-
munk.matplotlib.DrawOptions attribute),
26

shape_kinematic_color (easy-
munk.pygame.DrawOptions attribute), 28

86 Index

easymunk Documentation, Release 0.9.1

shape_kinematic_color (easy-
munk.pyglet.DrawOptions attribute), 30

shape_outline_color() (easy-
munk.matplotlib.DrawOptions property),
26

shape_outline_color() (easy-
munk.pygame.DrawOptions property), 28

shape_outline_color() (easy-
munk.pyglet.DrawOptions property), 30

shape_sleeping_color (easy-
munk.matplotlib.DrawOptions attribute),
26

shape_sleeping_color (easy-
munk.pygame.DrawOptions attribute), 28

shape_sleeping_color (easy-
munk.pyglet.DrawOptions attribute), 30

shape_static_color (easy-
munk.matplotlib.DrawOptions attribute),
26

shape_static_color (easy-
munk.pygame.DrawOptions attribute), 28

shape_static_color (easy-
munk.pyglet.DrawOptions attribute), 30

surface (easymunk.pygame.DrawOptions attribute),
26

T
to_pygame() (easymunk.pygame.DrawOptions

method), 28

Index 87

	Installation
	Example
	Documentation
	The Easymunk Vision
	Contact & Support
	Dependencies / Requirements
	Install from source / Chipmunk Compilation
	Contents
	Installation
	Install Easymunk
	Examples & Documentation
	Troubleshooting
	Advanced - Android Install
	Kivy
	Termux

	Advanced - Install
	Advanced - Running without installation

	Compile Chipmunk
	CFFI Installation

	Overview
	Basics
	Model your physics objects
	Object shape
	Mass, weight and units
	Looks before realism

	Game loop / moving time forward
	Object tunneling
	Unstable simulation?
	Performance
	Copy and Load/Save Easymunk objects
	Additional info

	API Reference
	easymunk Package
	easymunk.geometry Module
	easymunk.core Module
	easymunk.linalg Module
	easymunk.matplotlib Module
	easymunk.pygame Module
	easymunk.pyglet Module
	easymunk.pyxel Module

	Examples
	Jupyter Notebooks
	matplotlib_util_demo.ipynb
	newtons_cradle.ipynb

	Standalone Python
	arrows.py
	balls_and_lines.py
	basic_test.py
	bouncing_balls.py
	box2d_pyramid.py
	box2d_vertical_stack.py
	breakout.py
	constraints.py
	contact_and_no_flipy.py
	contact_with_friction.py
	copy_and_pickle.py
	damped_rotary_spring_pointer.py
	deformable.py
	flipper.py
	index_video.py
	kivy_pymunk_demo
	logo.py
	newtons_cradle.py
	platformer.py
	playground.py
	point_query.py
	py2exe_setup__basic_test.py
	py2exe_setup__breakout.py
	pygame_demo.py
	pyglet_demo.py
	shapes_for_draw_demos.py
	slide_and_pinjoint.py
	spiderweb.py
	tangram.py
	tank.py
	using_sprites.py
	using_sprites_pyglet.py

	Showcase
	Games
	Non-Games
	Papers / Science
	Cite Pymunk

	Tutorials
	Slide and Pin Joint Demo Step by Step
	Before we start
	An empty simulation
	Falling balls
	A static L
	Joints (1)
	Joints (2)
	Ending

	External Tutorials

	Benchmarks
	Micro benchmarks
	Results:

	Compared to Other Physics Libraries
	Cymunk

	Advanced
	Why CFFI?
	Code Layout
	Tests
	Working with non-wrapped parts of Chipmunk
	Weak References and free Methods

	Changelog
	Easymunk 0.9.0 (2021-03-01)

	License

	Indices and tables
	Python Module Index
	Index

